初中的数学竞赛代数部分分类总汇编

上传人:仙*** 文档编号:86544840 上传时间:2022-05-07 格式:DOC 页数:145 大小:3.76MB
返回 下载 相关 举报
初中的数学竞赛代数部分分类总汇编_第1页
第1页 / 共145页
初中的数学竞赛代数部分分类总汇编_第2页
第2页 / 共145页
初中的数学竞赛代数部分分类总汇编_第3页
第3页 / 共145页
点击查看更多>>
资源描述
word第一讲因式分解(一)多项式的因式分解是代数式恒等变形的根本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,开展学生的思维能力,都有着十分独特的作用初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法本讲与下一讲在中学数学教材根底上,对因式分解的方法、技巧和应用作进一步的介绍1运用公式法在整式的乘、除中,我们学过假如干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a22ab+b2=(ab)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2)下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)an-bn=(a-b)(an-1+an-2b+an-3b2+abn-2+bn-1)其中n为正整数;(8)an-bn=(a+b)(an-1-an-2b+an-3b2-+abn-2-bn-1),其中n为偶数;(9)an+bn=(a+b)(an-1-an-2b+an-3b2-abn-2+bn-1),其中n为奇数运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式例1 分解因式:(1)-2x5n-1yn+4x3n-1yn+2-2xn-1yn+4;(2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7解 (1)原式=-2xn-1yn(x4n-2x2ny2+y4)=-2xn-1yn(x2n)2-2x2ny2+(y2)2=-2xn-1yn(x2n-y2)2=-2xn-1yn(xn-y)2(xn+y)2(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z) =(x-2y-z)(x2+4y2+z2+2xy+xz-2yz)(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2(a-b)2+2c(a-b)+c2=(a-b+c)2本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)=(a-b+c)2(4)原式=(a7-a5b2)+(a2b5-b7) =a5(a2-b2)+b5(a2-b2) =(a2-b2)(a5+b5) =(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4) =(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)例2 分解因式:a3+b3+c3-3abc此题实际上就是用因式分解的方法证明前面给出的公式(6)分析我们已经知道公式(a+b)3=a3+3a2b+3ab2+b3的正确性,现将此公式变形为a3+b3=(a+b)3-3ab(a+b)这个式也是一个常用的公式,此题就借助于它来推导解原式=(a+b)3-3ab(a+b)+c3-3abc =(a+b)3+c3-3ab(a+b+c) =(a+b+c)(a+b)2-c(a+b)+c2-3ab(a+b+c) =(a+b+c)(a2+b2+c2-ab-bc-ca)说明公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为a3+b3+c3-3abc显然,当a+b+c=0时,如此a3+b3+c3=3abc;当a+b+c0时,如此a3+b3+c3-3abc0,即a3+b3+c33abc,而且,当且仅当a=b=c时,等号成立如果令x=a30,y=b30,z=c30,如此有等号成立的充要条件是x=y=z这也是一个常用的结论例3 分解因式:x15+x14+x13+x2+x+1分析这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式an-bn来分解解因为x16-1=(x-1)(x15+x14+x13+x2+x+1),所以说明在此题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用2拆项、添项法因式分解是多项式乘法的逆运算在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项拆项、添项的目的是使多项式能用分组分解法进展因式分解例4 分解因式:x3-9x+8分析此题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧解法1 将常数项8拆成-1+9原式=x3-9x-1+9=(x3-1)-9x+9=(x-1)(x2+x+1)-9(x-1)=(x-1)(x2+x-8)解法2 将一次项-9x拆成-x-8x原式=x3-x-8x+8=(x3-x)+(-8x+8)=x(x+1)(x-1)-8(x-1)=(x-1)(x2+x-8)解法3 将三次项x3拆成9x3-8x3原式=9x3-8x3-9x+8=(9x3-9x)+(-8x3+8)=9x(x+1)(x-1)-8(x-1)(x2+x+1)=(x-1)(x2+x-8)解法4 添加两项-x2+x2原式=x3-9x+8=x3-x2+x2-9x+8=x2(x-1)+(x-8)(x-1)=(x-1)(x2+x-8)说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种例5 分解因式:(1)x9+x6+x3-3;(2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4;(4)a3b-ab3+a2+b2+1解 (1)将-3拆成-1-1-1原式=x9+x6+x3-1-1-1=(x9-1)+(x6-1)+(x3-1)=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)=(x3-1)(x6+2x3+3)=(x-1)(x2+x+1)(x6+2x3+3)(2)将4mn拆成2mn+2mn原式=(m2-1)(n2-1)+2mn+2mn=m2n2-m2-n2+1+2mn+2mn=(m2n2+2mn+1)-(m2-2mn+n2)=(mn+1)2-(m-n)2=(mn+m-n+1)(mn-m+n+1)(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4=(x+1)4+2(x+1)2(x-1)2+(x-1)4-(x2-1)2=(x+1)2+(x-1)22-(x2-1)2=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3)(4)添加两项+ab-ab原式=a3b-ab3+a2+b2+1+ab-ab=(a3b-ab3)+(a2-ab)+(ab+b2+1)=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)=a(a-b)b(a+b)+1+(ab+b2+1)=a(a-b)+1(ab+b2+1)=(a2-ab+1)(b2+ab+1)说明 (4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验3换元法换元法指的是将一个较复杂的代数式中的某一局部看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰例6 分解因式:(x2+x+1)(x2+x+2)-12分析将原式展开,是关于x的四次多项式,分解因式较困难我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了解设x2+x=y,如此原式=(y+1)(y+2)-12=y2+3y-10=(y-2)(y+5)=(x2+x-2)(x2+x+5)=(x-1)(x+2)(x2+x+5)说明此题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试例7 分解因式:(x2+3x+2)(4x2+8x+3)-90分析先将两个括号内的多项式分解因式,然后再重新组合解原式=(x+1)(x+2)(2x+1)(2x+3)-90 =(x+1)(2x+3)(x+2)(2x+1)-90 =(2x2+5x+3)(2x2+5x+2)-90令y=2x2+5x+2,如此原式=y(y+1)-90=y2+y-90=(y+10)(y-9)=(2x2+5x+12)(2x2+5x-7)=(2x2+5x+12)(2x+7)(x-1)说明对多项式适当的恒等变形是我们找到新元(y)的根底例8 分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2解设x2+4x+8=y,如此原式=y2+3xy+2x2=(y+2x)(y+x)=(x2+6x+8)(x2+5x+8)=(x+2)(x+4)(x2+5x+8)说明由此题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式例9分解因式:6x4+7x3-36x2-7x+6解法1 原式=6(x4+1)7x(x2-1)-36x2=6(x4-2x2+1)+2x2+7x(x2-1)-36x2=6(x2-1)2+2x2+7x(x2-1)-36x2=6(x2-1)2+7x(x2-1)-24x2=2(x2-1)-3x3(x2-1)+8x=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3)说明本解法实际上是将x2-1看作一个整体,但并没有设立新元来代替它,即熟练使用换元法后,并非每题都要设置新元来代替整体解法2原式=x26(t2+2)+7t-36=x2(6t2+7t-24)=x2(2t-3)(3t+8)=x22(x-1/x)-33(x-1/x)+8=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3)例10 分解因式:(x2+xy+y2)-4xy(x2+y2)分析此题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式解原式=(x+y)2-xy2-4xy(x+y)2-2xy令x+y=u,xy=v,如此原式=(u2-v)2-4v(u2-2v)=u4-6u2v+9v2=(u2-3v)2=(x2+2xy+y2-3xy)2=(x2-xy+y2)2练习一1分解因式:(2)x10+x5-2;(4)(x5+x4+x3+x2+x+1)2-x52分解因式:(1)x3+3x2-4;(2)x4-11x2y2+y2;(3)x3+9x2+26x+24;(4)x4-12x+3233分解因式:(1)(2x2-3x+1)2-22x2+33x-1;(2)x4+7x3+14x2+7x+1;(3)(x+y)3+2xy(1-x-y)-1;(4)(x+3)(x2-1)(x+5)-20第二讲因式分解(二)1双十字相乘法分解二次三项式时,我们常用十字相乘法对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式例如,分解因式2x2-7xy-22y2-5x+35y-3我们将上式按x降幂排列,并把y当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3),可以看作是关于x的二次三项式对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为即-22y2+35y-3=(2y-3)(-11y+1)再利用十字相乘法对关于x的二次三项式分解所以原式=x+(2y-3)2x+(-11y+1)=(x+2y-3)(2x-11y+1)上述因式分解的过程,实施了两次十字相乘法如果把这两个步骤中的十字相乘图合并在一起,可得到如下图:它表示的是下面三个关系式:(x+2y)(2x-11y)=2x2-7xy-22y2;(x-3)(2x+1)=2x2-5x-3;(2y-3)(-11y+1)=-22y2+35y-3这就是所谓的双十字相乘法用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进展因式分解的步骤是:(1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx例1 分解因式:(1)x2-3xy-10y2+x+9y-2;(2)x2-y2+5x+3y+4;(3)xy+y2+x-y-2;(4)6x2-7xy-3y2-xz+7yz-2z2解 (1)原式=(x-5y+2)(x+2y-1)(2)原式=(x+y+1)(x-y+4)(3)原式中缺x2项,可把这一项的系数看成0来分解原式=(y+1)(x+y-2)(4)原式=(2x-3y+z)(3x+y-2z)说明 (4)中有三个字母,解法仍与前面的类似2求根法我们把形如anxn+an-1xn-1+a1x+a0(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),等记号表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,当x=a时,多项式f(x)的值用f(a)表示如对上面的多项式f(x)f(1)=12-31+2=0;f(-2)=(-2)2-3(-2)+2=12假如f(a)=0,如此称a为多项式f(x)的一个根定理1(因式定理) 假如a是一元多项式f(x)的根,即f(a)=0成立,如此多项式f(x)有一个因式x-a根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根对于任意多项式f(x),要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根定理2的根,如此必有p是a0的约数,q是an的约数特别地,当a0=1时,整系数多项式f(x)的整数根均为an的约数我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进展因式分解例2 分解因式:x3-4x2+6x-4分析这是一个整系数一元多项式,原式假如有整数根,必是-4的约数,逐个检验-4的约数:1,2,4,只有f(2)=23-422+62-4=0,即x=2是原式的一个根,所以根据定理1,原式必有因式x-2解法1 用分组分解法,使每组都有因式(x-2)原式=(x3-2x2)-(2x2-4x)+(2x-4)=x2(x-2)-2x(x-2)+2(x-2)=(x-2)(x2-2x+2)解法2 用多项式除法,将原式除以(x-2),所以原式=(x-2)(x2-2x+2)说明在上述解法中,特别要注意的是多项式的有理根一定是-4的约数,反之不成立,即-4的约数不一定是多项式的根因此,必须对-4的约数逐个代入多项式进展验证例3 分解因式:9x4-3x3+7x2-3x-2分析因为9的约数有1,3,9;-2的约数有1,为:所以,原式有因式9x2-3x-2解 9x4-3x3+7x2-3x-2=9x4-3x3-2x2+9x2-3x-2=x2(9x3-3x-2)+9x2-3x-2=(9x2-3x-2)(x2+1)=(3x+1)(3x-2)(x2+1)说明假如整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,如上题中的因式可以化为9x2-3x-2,这样可以简化分解过程总之,对一元高次多项式f(x),如果能找到一个一次因式(x-a),那么f(x)就可以分解为(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,这样,我们就可以继续对g(x)进展分解了3待定系数法待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法例4 分解因式:x2+3xy+2y2+4x+5y+3分析由于(x2+3xy+2y2)=(x+2y)(x+y),假如原式可以分解因式,那么它的两个一次项一定是x+2y+m和xyn的形式,应用待定系数法即可求出m和n,使问题得到解决解设x2+3xy+2y2+4x+5y+3=(x+2y+m)(x+y+n)=x2+3xy+2y2+(m+n)x+(m+2n)y+mn,比拟两边对应项的系数,如此有解之得m=3,n=1所以原式=(x+2y+3)(x+y+1)说明此题也可用双十字相乘法,请同学们自己解一下例5 分解因式:x4-2x3-27x2-44x+7分析此题所给的是一元整系数多项式,根据前面讲过的求根法,假如原式有有理根,如此只可能是1,7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式如果原式能分解,只能分解为(x2+ax+b)(x2+cx+d)的形式解设原式=(x2+ax+b)(x2+cx+d)=x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd,所以有由bd=7,先考虑b=1,d=7有所以原式=(x2-7x+1)(x2+5x+7)说明由于因式分解的唯一性,所以对b=-1,d=-7等可以不加以考虑此题如果b=1,d=7代入方程组后,无法确定a,c的值,就必须将bd=7的其他解代入方程组,直到求出待定系数为止此题没有一次因式,因而无法运用求根法分解因式但利用待定系数法,使我们找到了二次因式由此可见,待定系数法在因式分解中也有用武之地练习二1用双十字相乘法分解因式:(1)x2-8xy+15y2+2x-4y-3;(2)x2-xy+2x+y-3;(3)3x2-11xy+6y2-xz-4yz-2z22用求根法分解因式:(1)x3+x2-10x-6;(2)x4+3x3-3x2-12x-4;(3)4x4+4x3-9x2-x+23用待定系数法分解因式:(1)2x2+3xy-9y2+14x-3y+20;(2)x4+5x3+15x-9第三讲实数的假如干性质和应用实数是高等数学特别是微积分的重要根底在初中代数中没有系统地介绍实数理论,是因为它涉与到极限的概念这一概念对中学生而言,有一定难度但是,如果中学数学里没有实数的概念与其简单的运算知识,中学数学也将无法继续学习下去了例如,即使是一元二次方程,只有有理数的知识也是远远不够用的因此,适当学习一些有关实数的根底知识,以与运用这些知识解决有关问题的根本方法,不仅是为高等数学的学习打根底,而且也是初等数学学习所不可缺少的本讲主要介绍实数的一些根本知识与其应用用于解决许多问题,例如,不难证明:任何两个有理数的和、差、积、商还是有理数,或者说,有理数对加、减、乘、除(零不能做除数)是封闭的性质1 任何一个有理数都能写成有限小数(整数可以看作小数点后面为零的小数)或循环小数的形式,反之亦然例1分析要说明一个数是有理数,其关键要看它能否写成两个整数比的形式证设两边同乘以100得-得99x=261.54-2.61=258.93,无限不循环小数称为无理数有理数对四如此运算是封闭的,而无理是说,无理数对四如此运算是不封闭的,但它有如下性质性质2 设a为有理数,b为无理数,如此(1)a+b,a-b是无理数;有理数和无理数统称为实数,即在实数集内,没有最小的实数,也没有最大的实数任意两个实数,可以比拟大小全体实数和数轴上的所有点是一一对应的在实数集内进展加、减、乘、除(除数不为零)运算,其结果仍是实数(即实数对四如此运算的封闭性)任一实数都可以开奇次方,其结果仍是实数;只有当被开方数为非负数时,才能开偶次方,其结果仍是实数例2分析证所以分析要证明一个实数为无限不循环小数是一件极难办到的事由于有理数与无理数共同组成了实数集,且二者是矛盾的两个对立面,所以,判定一个实数是无理数时,常常采用反证法证用反证法所以p一定是偶数设p=2m(m是自然数),代入得4m22q2,q22m2,例4 假如a1+b1a=a2+b2a(其中a1,a2,b1,b2为有理数,a为无理数),如此a1=a2,b1=b2,反之,亦成立分析设法将等式变形,利用有理数不能等于无理数来证明证将原式变形为(b1-b2)a=a2-a1假如b1b2,如此反之,显然成立说明本例的结论是一个常用的重要运算性质是无理数,并说明理由整理得由例4知aAb,1=A,说明本例并未给出确定结论,需要解题者自己发现正确的结有理数作为立足点,以其作为推理的根底例6 a,b是两个任意有理数,且ab,求证:a与b之间存在着无穷多个有理数(即有理数集具有稠密性)分析只要构造出符合条件的有理数,题目即可被证明证因为ab,所以2aa+b2b,所以说明构造具有某种性质的一个数,或一个式子,以达到解题和证明的目的,是经常运用的一种数学建模的思想方法例7 a,b是两个任意有理数,且ab,问是否存在无理数,使得ab成立?即由,有存在无理数,使得ab成立b4+12b3+37b2+6b-20的值分析因为无理数是无限不循环小数,所以不可能把一个无理数的小数局部一位一位确定下来,这样涉与无理数小数局部的计算题,往往是先估计它的整数局部(这是容易确定的),然后再寻求其小数局部的表示方法14=9+6b+b2,所以b2+6b=5b4+12b3+37b2+6b-20=(b4+26b3+36b2)+(b2+6b)-20=(b2+6b)2+(b2+6b)-20=52+5-20=10例9 求满足条件的自然数a,x,y解将原式两边平方得由式变形为两边平方得例10 设an是12+22+32+n2的个位数字,n=1,2,3,1a2a3an是有理数分析1a2a3an是有理数,只要证它为循环小数因此此题我们从寻找它的循环节入手证计算an的前假如干个值,寻找规律:1,5,4,0,5,1,0,4,5,5,6,0,9,5,0,6,5,9,0,0,1,5,4,0,5,1,0,4,发现:a20=0,a21=a1,a22=a2,a23=a3,于是猜测:ak+20=ak1a2an是由20个数字组成循环节的循环小数,即下面证明ak+20=ak令f(n)=12+22+n2,当f(n+20)-f(n)是10的倍数时,明确f(n+20)与f(n)有一样的个位数,而f(n+20)-f(n)=(n+1)2+(n+2)2+(n+20)2=10(2n2+42n)+(12+22+202)由前面计算的假如干值可知:12+22+202是10的倍数,故ak+20=ak1a2an是一个有理数练习三1如下各数中哪些是有理数,哪些是无理数?为什么?5设,为有理数,为无理数,假如+=0,求证:=0第四讲分式的化简与求值分式的有关概念和性质与分数相类似,例如,分式的分母的值不能是零,即分式只有在分母不等于零时才有意义;也像分数一样,分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变,这一性质是分式运算中通分和约分的理论根据在分式运算中,主要是通过约分和通分来化简分式,从而对分式进展求值除此之外,还要根据分式的具体特征灵活变形,以使问题得到迅速准确的解答本讲主要介绍分式的化简与求值例1 化简分式:分析直接通分计算较繁,先把每个假分式化成整式与真分式之和的形式,再化简将简便得多(2a+1)-(a-3)-(3a+2)+(2a-2)说明此题的关键是正确地将假分式写成整式与真分式之和的形式例2 求分式当a=2时的值分析与解先化简再求值直接通分较复杂,注意到平方差公式:a2-b2=(a+b)(a-b),可将分式分步通分,每一步只通分左边两项例3 假如abc=1,求分析此题可将分式通分后,再进展化简求值,但较复杂下面介绍几种简单的解法解法1 因为abc=1,所以a,b,c都不为零解法2 因为abc=1,所以a0,b0,c0例4 化简分式:分析与解三个分式一齐通分运算量大,可先将每个分式的分母分解因式,然后再化简说明互消掉的一对相反数,这种化简的方法叫“拆项相消法,它是分式化简中常用的技巧例5 化简计算(式中a,b,c两两不相等):似的,对于这个分式,显然分母可以分解因式为(a-b)(a-c),而分子又恰好凑成(a-b)+(a-c),因此有下面的解法解说明本例也是采取“拆项相消法,所不同的是利用例6 :x+y+z=3a(a0,且x,y,z不全相等),求分析此题字母多,分式复杂假如把条件写成(x-a)+(y-a)+(z-a)=0,那么题目只与x-a,y-a,z-a有关,为简化计算,可用换元法求解解令x-a=u,y-a=v,z-a=w,如此分式变为u2+v2+w2+2(uv+vw+wu)=0由于x,y,z不全相等,所以u,v,w不全为零,所以u2+v2+w20,从而有说明从本例中可以看出,换元法可以减少字母个数,使运算过程简化例7 化简分式:适当变形,化简分式后再计算求值(x-4)2=3,即x2-8x+130原式分子=(x4-8x3+13x2)+(2x3-16x2+26x)+(x2-8x+13)+10=x2(x2-8x+13)+2x(x2-8x+13)+(x2-8x+13)+10=10,原式分母=(x2-8x+13)+2=2,说明本例的解法采用的是整体代入的方法,这是代入消元法的一种特殊类型,应用得当会使问题的求解过程大大简化解法1 利用比例的性质解决分式问题(1)假如a+b+c0,由等比定理有所以a+b-c=c,a-b+c=b,-a+b+c=a,于是有(2)假如a+b+c=0,如此a+b=-c,b+c=-a,c+a=-b,于是有说明比例有一系列重要的性质,在解决分式问题时,灵活巧妙地使用,便于问题的求解解法2 设参数法令如此a+b=(k+1)c,a+c=(k+1)b,b+c=(k+1)a+有2(a+b+c)=(k+1)(a+b+c),所以 (a+b+c)(k-1)=0,故有k=1或 a+b+c=0当k=1时,当a+b+c=0时,说明引进一个参数k表示以连比形式出现的条件,可使条件便于使用练习四1化简分式:2计算:3:(y-z)2+(z-x)2+(x-y)2=(x+y-2z)2+(y+z-2x)2+(z+x-2y)2,的值第五讲恒等式的证明代数式的恒等变形是初中代数的重要内容,它涉与的根底知识较多,主要有整式、分式与根式的根本概念与运算法如此,因式分解的知识与技能技巧等等,因此代数式的恒等变形是学好初中代数必备的根本功之一本讲主要介绍恒等式的证明首先复习一下根本知识,然后进展例题分析两个代数式,如果对于字母在允许X围内的一切取值,它们的值都相等,如此称这两个代数式恒等把一个代数式变换成另一个与它恒等的代数式叫作代数式的恒等变形恒等式的证明,就是通过恒等变形证明等号两边的代数式相等证明恒等式,没有统一的方法,需要根据具体问题,采用不同的变形技巧,使证明过程尽量简捷一般可以把恒等式的证明分为两类:一类是无附加条件的恒等式证明;另一类是有附加条件的恒等式的证明对于后者,同学们要善于利用附加条件,使证明简化下面结合例题介绍恒等式证明中的一些常用方法与技巧1由繁到简和相向趋进恒等式证明最根本的思路是“由繁到简(即由等式较繁的一边向另一边推导)和“相向趋进(即将等式两边同时转化为同一形式)例1 x+y+z=xyz,证明:x(1-y2)(1-z2)+y(1-x2)(1-z2)+z(1-x2)(1-y2)=4xyz分析将左边展开,利用条件x+y+z=xyz,将等式左边化简成右边证因为x+y+z=xyz,所以左边=x(1-z2-y2-y2z2)+y(1-z2-x2+x2z2)+(1-y2-x2+x2y2) =(x+y+z)-xz2-xy2+xy2z2-yz2+yx2+yx2z2-zy2-zx2+zx2y2=xyz-xy(y+x)-xz(x+z)-yz(y+z)+xyz(xy+yz+zx)=xyz-xy(xyz-z)-xz(xyz-y)-yz(xyz-x)+xyz(xy+yz+zx)=xyz+xyz+xyz+xyz=4xyz=右边说明本例的证明思路就是“由繁到简例2 1989x2=1991y2=1993z2,x0,y0,z0,且证令1989x2=1991y2=1993z2=k(k0),如此又因为所以所以说明本例的证明思路是“相向趋进,在证明方法上,通过设参数k,使左右两边同时变形为同一形式,从而使等式成立2比拟法a=b(比商法)这也是证明恒等式的重要思路之一例3 求证:分析用比差法证明左-右=0本例中,这个式子具有如下特征:如果取出它的第一项,把其中的字母轮换,即以b代a,c代b,a代c,如此可得出第二项;假如对第二项的字母实行上述轮换,如此可得出第三项;对第三项的字母实行上述轮换,可得出第一项具有这种特性的式子叫作轮换式利用这种特性,可使轮换式的运算简化证因为所以所以说明本例假如采用通分化简的方法将很繁像这种把一个分式分解成几个局部分式和的形式,是分式恒等变形中的常用技巧全不为零证明:(1+p)(1+q)(1+r)=(1-p)(1-q)(1-r)同理所以所以(1+p)(1+q)(1+r)=(1-p)(1-q)(1-r)说明本例采用的是比商法3分析法与综合法根据推理过程的方向不同,恒等式的证明方法又可分为分析法与综合法分析法是从要求证的结论出发,寻求在什么情况下结论是正确的,这样一步一步逆向推导,寻求结论成立的条件,一旦条件成立就可断言结论正确,即所谓“执果索因而综合法正好相反,它是“由因导果,即从条件出发顺向推理,得到所求结论证要证 a2+b2+c2=(a+b-c)2,只要证a2+b2+c2=a2+b2+c2+2ab-2ac-2bc,只要证 ab=ac+bc,只要证 c(a+b)=ab,只要证这最后的等式正好是题设,而以上推理每一步都可逆,故所求证的等式成立说明此题采用的方法是典型的分析法例6 a4+b4+c4+d4=4abcd,且a,b,c,d都是正数,求证:a=b=c=d证由可得a4+b4+c4+d4-4abcd=0,(a2-b2)2+(c2-d2)2+2a2b2+2c2d2-4abcd=0,所以(a2-b2)2+(c2-d2)2+2(ab-cd)2=0因为(a2-b2)20,(c2-d2)20,(ab-cd)20,所以a2-b2=c2-d2=ab-cd=0,所以 (a+b)(a-b)=(c+d)(c-d)0又因为a,b,c,d都为正数,所以a+b0,c+d0,所以ab,c=d所以ab-cd=a2-c2=(a+c)(a-c)=0,所以ac故a=bc=d成立说明此题采用的方法是综合法4其他证明方法与技巧求证:8a+9b+5c=0a+b=k(a-b),b+c=2k(b-c),(c+a)=3k(c-a)所以6(a+b)=6k(a-b),3(b+c)=6k(b-c),2(c+a)=6k(c-a)以上三式相加,得6(a+b)+3(b+c)+2(c+a)=6k(a-b+b-c+c-a),即 8a+9b+5c=0说明此题证明中用到了“遇连比设为k的设参数法,前面的例2用的也是类似方法这种设参数法也是恒等式证明中的常用技巧例8 a+b+c=0,求证2(a4+b4+c4)(a2+b2+c2)2分析与证明用比差法,注意利用a+b+c=0的条件左-右=2(a4+b4+c4)-(a2+b2+c2)2=a4+b4+c4-2a2b2-2b2c2-2c2a2=(a2-b2-c2)2-4b2c2=(a2-b2-c2+2bc)(a2-b2-c2-2bc)=a2-(b-c)2a2-(b+c)2=(a-b+c)(a+b-c)(a-b-c)(a+b+c)=0所以等式成立说明此题证明过程中主要是进展因式分解分析此题的两个条件中,包含字母a,x,y和z,而在求证的结论中,却只包含a,x和z,因此可以从消去y着手,得到如下证法证由说明此题利用的是“消元法,它是证明条件等式的常用方法例10 证明:(y+z-2x)3+(z+x-2y)3+(x+y-2z)3=3(y+z-2x)(z+x-2y)(x+y-2z)分析与证明此题看起来很复杂,但仔细观察,可以使用换元法令y+z-2x=a,z+x-2y=b,x+y-2z=c,如此要证的等式变为a3+b3+c3=3abc联想到乘法公式:a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca),所以将,相加有a+b+c=y+z-2x+z+x-2y+x+y-2z=0,所以 a3+b3+c3-3abc=0,所以(y+z-2x)3+(z+x-2y)3+(x+y-2z)3=3(y+z-2x)(z+x-2y)(x+y-2z)说明由本例可以看出,换元法也可以在恒等式证明中发挥效力例11 设x,y,z为互不相等的非零实数,且求证:x2y2z2=1分析此题x,y,z具有轮换对称的特点,我们不妨先看二元的所以x2y2=1三元与二元的结构类似证由有得x2y2z2=1说明这种欲进先退的解题策略经常用于探索解决问题的思路中总之,从上面的例题中可以看出,恒等式证明的关键是代数式的变形技能同学们要在明确变形目的的根底上,深刻体会例题中的常用变形技能与方法,这对以后的数学学习非常重要练习五1(c-a)2-4(a-b)(b-c)=0,求证:2b=a+c2证明:(x+y+z)3xyz-(yz+zx+xy)3=xyz(x3+y3+z3)-(y3z3+z3x3+x3y3)3求证:5证明:6x2-yz=y2-xz=z2-xy,求证:x=y=z或x+y+z=07an-bm0,a0,ax2+bx+c=0,mx2+nx+p=0,求证:(cm-ap)2=(bp-)(an-bm)第六讲代数式的求值代数式的求值与代数式的恒等变形关系十分密切许多代数式是先化简再求值,特别是有附加条件的代数式求值问题,往往需要利用乘法公式、绝对值与算术根的性质、分式的根本性质、通分、约分、根式的性质等等,经过恒等变形,把代数式中隐含的条件显现出来,化简,进而求值因此,求值中的方法技巧主要是代数式恒等变形的技能、技巧和方法下面结合例题逐一介绍1利用因式分解方法求值因式分解是重要的一种代数恒等变形,在代数式化简求值中,经常被采用分析 x的值是通过一个一元二次方程给出的,假如解出x后,再求值,将会很麻烦我们可以先将所求的代数式变形,看一看能否利用条件解条件可变形为3x2+3x-1=0,所以6x4+15x3+10x2=(6x4+6x3-2x2)+(9x3+9x2-3x)+(3x2+3x-1)+1=(3x2+3x-1)(2z2+3x+1)+1=0+1=1说明在求代数式的值时,假如的是一个或几个代数式的值,这时要尽可能防止解方程(或方程组),而要将所要求值的代数式适当变形,再将的代数式的值整体代入,会使问题得到简捷的解答例2 a,b,c为实数,且满足下式:a2+b2+c2=1,求a+b+c的值解将式因式分解变形如下即所以a+b+c=0或bc+ac+ab=0假如bc+ac+ab=0,如此(a+b+c)2=a2+b2+c2+2(bc+ac+ab)=a2+b2+c2=1,所以 a+b+c=1所以a+b+c的值为0,1,-1说明此题也可以用如下方法对式变形:即前一解法是加一项,再减去一项;这个解法是将3拆成1+1+1,最终都是将式变形为两个式子之积等于零的形式2利用乘法公式求值例3 x+y=m,x3+y3=n,m0,求x2+y2的值解因为x+y=m,所以m3=(x+y)3=x3+y3+3xy(x+y)=n+3mxy,所以求x2+6xy+y2的值分析将x,y的值直接代入计算较繁,观察发现,中x,y的值正好是一对共轭无理数,所以很容易计算出x+y与xy的值,由此得到以下解法解 x2+6xy+y2=x2+2xy+y2+4xy=(x+y)2+4xy3设参数法与换元法求值如果代数式字母较多,式子较繁,为了使求值简便,有时可增设一些参数(也叫辅助未知数),以便沟通数量关系,这叫作设参数法有时也可把代数式中某一局部式子,用另外的一个字母来替换,这叫换元法分析此题的条件是以连比形式出现,可引入参数k,用它表示连比的比值,以便把它们分割成几个等式x(a-b)k,y(b-c)k,z(c-a)k所以x+y+z=(a-b)k(b-c)k+(c-a)k=0u+v+w=1,由有把两边平方得u2+v2+w2+2(uv+vw+wu)=1,所以u2+v2+w2=1,即两边平方有所以4利用非负数的性质求值假如几个非负数的和为零,如此每个非负数都为零,这个性质在代数式求值中经常被使用例8 假如x2-4x+|3x-y|=-4,求yx的值分析与解x,y的值均未知,而题目却只给了一个方程,似乎无法求值,但仔细挖掘题中的隐含条件可知,可以利用非负数的性质求解因为x2-4x+|3x-y|=-4,所以x2-4x4|3x-y|=0,即 (x-2)2+|3x-y|=0所以 yx=62=36例9 未知数x,y满足(x2y2)m2-2y(x+n)m+y2+n2=0,其中m,n表示非零数,求x,y的值分析与解两个未知数,一个方程,对方程左边的代数式进展恒等变形,经过配方之后,看是否能化成非负数和为零的形式将等式变形为m2x2+m2y2-2mxy-2mny+y2+n2=0,(m2x2-2mxy+y2)+(m2y2-2mny+n2)=0,即 (mx-y)2+(my-n)2=05利用分式、根式的性质求值分式与根式的化简求值问题,内容相当丰富,因此设有专门讲座介绍,这里只分别举一个例子略做说明例10 xyzt=1,求下面代数式的值:分析直接通分是笨拙的解法,可以利用条件将某些项的形式变一变解根据分式的根本性质,分子、分母可以同时乘以一个不为零的式子,分式的值不变利用条件,可将前三个分式的分母变为与第四个一样同理分析计算时应注意观察式子的特点,假如先分母有理化,计算反而复杂因为这样一来,原式的对称性就被破坏了这里所言的对称性是分利用这种对称性,或称之为整齐性,来简化我们的计算同样(但请注意算术根!)将,代入原式有练习六2x+y=a,x2+y2=b2,求x4+y4的值3a-b+c=3,a2+b2+c2=29,a3+b3+c3=45,求ab(a+b)+bc(b+c)+ca(c+a)的值5设a+b+c=3m,求(m-a)3+(m-b)3+(m-c)3-3(m-a)(m-b)(m-c)的值813x2-6xy+y2-4x+1=0,求(x+y)13x10的值第七讲根式与其运算二次根式的概念、性质以与运算法如此是根式运算的根底,在进展根式运算时,往往用到绝对值、整式、分式、因式分解,以与配方法、换元法、待定系数法等有关知识与解题方法,也就是说,根式的运算,可以培养同学们综合运用各种知识和方法的能力下面先复习有关根底知识,然后进展例题分析二次根式的性质:二次根式的运算法如此:设a,b,c,d,m是有理数,且m不是完全平方数,如此当且仅当两个含有二次根式的代数式相乘时,如果它们的积不含有二次根式,如此这两个代数式互为有理化因式例1 化简:法是配方去掉根号,所以因为x-20,1-x0,所以原式=2-x+x-1=1a-b-a+b-a+b=b-a说明假如根式中的字母给出了取值X围,如此应在这个X围内进展化简;假如没有给出取值X围,如此应在字母允许取值的X围内进展化简例2 化简:分析两个题分母均含有根式,假如按照通常的做法是先分母有理化,这样计算化简较繁我们可以先将分母因式分解后,再化简解法1 配方法配方法是要设法找到两个正数x,y(xy),使x+y=a,xy=b,如此解法2 待定系数法例4 化简:(2)这是多重复合二次根式,可从里往外逐步化简分析被开方数中含有三个不同的根式,且系数都是2,可以看成解设两边平方得得(xyz)2=5735=352因为x,y,z均非负,所以xyz0,所以xyz=35,有z=7同理有x=5,y=1所求x,y,z显然满足,所以解设原式=x,如此解法1 利用(ab)3a3b33ab(ab)来解将方程左端因式分解有(x-4)(x24x10)0因为x24x10(x2)26
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 管理文书 > 施工组织


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!