基于TCS3200颜色传感器的色彩识别器的设计论文

上传人:be****l 文档编号:76508513 上传时间:2022-04-18 格式:DOC 页数:53 大小:1.66MB
返回 下载 相关 举报
基于TCS3200颜色传感器的色彩识别器的设计论文_第1页
第1页 / 共53页
基于TCS3200颜色传感器的色彩识别器的设计论文_第2页
第2页 / 共53页
基于TCS3200颜色传感器的色彩识别器的设计论文_第3页
第3页 / 共53页
点击查看更多>>
资源描述
本科毕业论文题 目 基于TCS3200颜色传感器 的色彩识别系统的设计学 院 信息科学技术学院 专 业 电子信息工程 毕业届别 2013届 姓 名 指导教师 职 称 讲 师 XXXXXXXXX大学教务处制二一三年五月48 / 53目 录摘要i关键词iiiAbstractiiivKey wordsiiiv1 绪论 11.1 研究背景11.2 色彩识别与颜色传感器技术的发展趋势11.2.1 颜色识别技术的研究成果11.2.2 国颜色传感器的研究成果与动态31.3本论文的主要工作与意义 42 颜色识别与颜色传感器技术介绍52.1 色彩识别52.2 色彩识别算法52.2.1色彩识别的应用 52.2.2色彩识别一般算法 52.3颜色传感器技术 62.3.1颜色检测的难点 62.3.2颜色传感器 72.4 本章小结 123 基于TCS3200的硬件设计 133.1 AT89S52单片机简介133.1.1 AT89S52的主要性能和参数133.1.2 AT89S52的主要功能143.2 TCS3200颜色识别原理简介163.2.1 TCS3200芯片的结构框图与特点163.2.2 TCS3200识别颜色的原理183.3 液晶显示器LCD1602简介193.3.1 字符型液晶显示模块CA1602A的外观与引脚 193.3.2 指令格式与指令功能203.3.3 LCD显示器的初始化 213.4本章小结224 色彩识别器系统的设计与实现 234.1 系统结构框图 234.2 AT89S52单片机最小系统 244.3 TCS3200驱动模块的设计 254.4 TCS3200颜色采集模块的设计 274.4.1 TCS3200颜色采集模块与52单片机的接口274.4.2 TCS3200颜色采集模块的软件设计284.5 4个白色LED补光模块的设计314.6 LCD1602液晶显示模块314.6.1 LCD1602液晶显示模块硬件设计324.6.2 LCD1602液晶显示模块软件设计324.7 本章小结 345 色彩识别系统的实验 355.1色彩识别的实验过程355.2 实验结果分析 355.3 本章小结 366 结论与展望 376.1 结论 376.2 展望 37参考文献 38致 40附录1 程序代码 41附录2 电路图 48基于TCS3200颜色传感器的色彩识别系统的设计王明(XXXX大学信息科学技术学院电子信息工程专业,650000)摘要:随着科技的发展,现代工业生产向高速化、自动化方向不断进步,色彩识别技术已经广泛应用于各种工业检测和自动控制领域,生产过程中长期以来由人眼起主导作用的颜色识别工作将越来越多地被相应的颜色传感器所替代。如:各种物体表面颜色识别、产品包装色标检测、产品外表特征颜色的检测、液体溶液颜色变化过程的检测与控制等等。本文主要介绍如何通过使用TCS3200颜色传感器来实现色彩识别的功能。本论文首先介绍不同颜色识别技术,利用三原色的感应原理以与TCS3200识别颜色的原理,实现TCS3200颜色传感器测量颜色的功能,并对所测得的数据进行处理,转换成RGB三种颜色光数值,通过LCD将经过处理后的数据显示出来。最后在此理论基础上设计了系统的总体方案,通过硬件实现了系统功能。相关部分附有硬件电路图、程序流程图。本设计具有体积小、成本低、功能强等特点。关键字:TCS3200颜色传感器;AT89S52单片机;颜色识别 THE COLOR RECOGNITION DESIGN BASED ON TCS3200COLOR SENSORWang Ming(Major in Electronic and Information Engineeringin the College of Information Science and Technology ofXXXX University,shanxixian,650000)Abstract:With the rapid development of science and technology, modern manufacturing industry has been making great advances towards high-speed growth and automation. Meanwhile, the color-recognition technology has been widely-used in the fields of industrial inspection and automatic control. The color-recognition work, which used to rely on human eyes for years, is now increasingly replaced by a specific color-sensor. There are numerous examples in terms of the application of color-sensors, including recognizing color on the surface of objects, color detection of both product packaging and its appearance features, and color detection and control of liquid solution, etc.This paper illustrated how to recognize color by using a TCS3200 Color-Sensor. In the beginning, the paper reavealed different kinds of color-recognition technology. Under the induction principle of three primary colors and the operating principle of a TCS3200 Color-Sensor, the color-recognition function of this device was practiced. Secondly, this paper analyzed the data and converted it into the light figures of RGB color afterwards. Subsequently, the processed data was displayed through a LCD. And in the third part, the overall project was designed based on the above-mentioned theories. And with the help of hardwares, the project was finally put into practice. Additionally, relavant hardware circuit digrams and follow charts were also demonstrated in this paper. The main features of this design are small volume, low cost and strong function.Keywords:TCS3200 Color-Sensor;AT89S52MCU;Color-Recognition1 绪 论1.1 研究背景随着现代工业生产向高速化、自动化方向的发展,颜色识别广泛应用于各种工业检测和自动控制领域,而生产过程中长期以来由人眼起主导作用的颜色识别工作将越来越多地被相应的颜色传感器所替代。如:各种物体表面颜色识别(产品包装色标检测,产品外表特征颜色的检测,液体溶液颜色变化过程的检测与控制,等等)。目前的颜色传感器通常是在独立的光电二极管上覆盖经过修正的红、绿、篮滤光片,然后对输出信号进行相应的处理,才能将颜色信号识别出来;有的将两者集合起来,但是输出模拟信号,需要一个A/D电路进行采样,对该信号进一步处理,才能进行识别,增加了电路的复杂性,并且存在较大的识别误差,影响了识别的效果。而TCS3200颜色传感器是美国TAOS公司生产的一种可编程并且能实现彩色光到频率转换的转换器,比市面上见到的光转电压颜色检测仪器在性能上有更多的优势。TCS3200它对光的动态响应围大,标准输出频率围为2Hz500kHz,TCS3200有两个可编程的引脚,使用者可以对100%、20%、2%或者是动力关闭模块的输出量程进行选择使用。TCS3200在不需要DCs系统的情况下,给每个彩色通道至少能提供10字节的分辨。TCS3200可以用于彩色打印机、医疗诊断、LED检测、液体颜色识别、电脑彩色监控标准、颜色产品加工控制、和油漆、纺织品、化装品与打印材料的彩色搭配等颜色检测产品。1.2 色彩识别与颜色传感器技术的发展趋势颜色传感器也叫色彩识别传感器。标准的颜色测量方法是采用光谱光度测色仪,通过测量样品的三刺激值,从而得到样品的颜色。目前,基于各种原理的颜色识别传感器有两种基本类型: 其一是RGB(红绿蓝) 颜色传感器, 检测的是三刺激值; 其二是色差传感器,检测被测物体与标准颜色的色差。这类装置许多是漫反射型、光束型和光纤型的, 封装在各种金属和聚碳酸酯外壳中。1.2.1 颜色识别技术的研究成果(1) MAZET公司最新推出的颜色传感器MTCSiCS,不仅能够实现颜色的识别与检测,色彩传感器具有高精度3色测量(CIE),是测量光源系统的出色解决方案,其控制系统可以捕捉到目前的颜色状况,然后根据图像信号反馈的信息控制并达到相应的Yxy值。相比别的传感器,在温度变化的情况下,MAZET的传感器性能不变,甚至在温度或者能量很高的情况下、MAZET的传感器也不会有任何老化。MTCSiCS的输出信号是数字量,可以驱动标准的TTL或CMOS逻辑输入,因此可直接与微处理器或其他逻辑电路相连接。由于输出的是数字量,并且能够实现每个彩色信道10位以上的转换精度、因而不再需要A/D转换电路,使电路变得更简单。当入射光投射到MTCSiCS上时,通过光电二极管控制引脚S2、S3的不同组合,可以选择不同的滤波器:经过电流到频率转换器后输出不同频率的 方波(占空比是50),不同的颜色和光强对应不同频率的方波;还可以通过输出定标控制引脚S0、S1,选择不同的输出比例因子,对输出频率围进行调整,以适应不同的需求。(2) 德国ELTROTEC色标传感器可以检测出颜色的差异,ELTROTEC色标检测器具有灵敏度高、响应速度快、抗背景干扰能力强。即使颜色上的细微差异或高光泽目标物也能够被ELTROTEC检测到,产品被广泛的运用于包装机械和印刷机械,造纸机械等自控系统中。ELTROTEC色标检测器适用于必须快速和准确检测色标或其他用颜色对比作记号的场合。在30多种不同的灰度等级中,色标检测器可检测所有类型的色标标记,可给不同的用户界面提供多种对比度检测技术,以满足广泛的应用领域,是业界最佳的色彩辨识仪器。(3)FT50C-1颜色传感器:自2001年,通过测试开始投入应用至今FT50C-1一直得到广泛应用。该传感器使用直径4mm的圆光斑。适合用于分选包装或检测不同类型的标签。FT50C-2颜色传感器:使用2mm的正方形光斑。适合于检测非常微小的物体。典型应用是:检测小部件或检测细致的仪器。FT50C-3颜色传感器:使用1mm*5mm的长方形光斑。专为检测长方形物体而设计。典型应用为:检测导管半导体芯片的缺失和正确顺序。(4) CS颜色检测器利用三色光方法鉴别颜色。CS颜色检测器可以发射多种光谱组合,从而代替了传统的接收端滤式宽带光谱(易受周围光线影响)。被检测物体的反射光线被接收并被数字化,通过集成的微处理器进行运算和标准化。所有的红、绿、蓝(RGB)波长围包括所有必要色度、饱和度和亮度等信息都被包括在最后的信号值中。这些测量与保存的参考值在数微秒进行比较,根据结果,改变开关输出的状态。颜色检测器可利用接收光和发射光的颜色检测而鉴别物体-例如透明物体或液体。根据工作需要,可以通过自学习模式存储一个或三个颜色参考值。因为颜色检测器对周围光线极度不敏感,所以检测的可靠性不会被进入传感器一端的反映或光线影响。1.2.2 国颜色传感器的研究成果与动态(1) 火狐公司推出的MCS颜色传感器是最小的三原色传感器,由三个Si-PIN光电管以与在片滤波器集成在一起的,每个光电管都各自有三种颜色之一的滤波器。它具备小尺寸设 计,高质量滤波器和三种颜色同步记录的特点。三个不同区域的颜色识别响应,类似于人眼。每个光电管对相应光谱滤波器的颜色光最敏感,主要是红色,绿色,蓝色。对高动态工业颜色应用(允许信号频率到 MHz围),新的紧凑型颜色传感器是首选,适合低价格快速信号处理。这种光电管的环型排列,适合辅助光纤测量信号的耦合。这些传感器提供TO5和 SOP8透明塑料或者玻璃封装。(2) 创光电子的PDIC903B颜色传感器主要用来检测环境亮度水平,并通过提供高度线性的成比例输出,来调节显示屏幕或键盘的背光。可帮助便携式显示设备降低功耗,延长LCD屏幕的使用寿命。这些经济型传感器可以根据制造商预先设定的模式来控制便携式LCD显示器的背光。尺寸(宽x长x高)5.0x5.0 x 1.0mm 受光面积:4.0x4.0mm 波长围:390-700nm 峰值波长:620nm550nm470nm(三色)工作电压:2.3-5V 灵敏度围:3 lx-80klx 精确度:输入电流500mA时对数曲线上下偏差3% 可提供样品。广泛应用于:移动设备 PDA、移动、笔记本电脑和数码相机的键盘和显示屏背光控制。 (3) 市易创特自动化设备推出的新一代数字颜色传感器TCS3414CS,不但可以侦测颜色,同时还可以侦测色温。其应用主要是带有液晶屏的数码产品如液晶电视,可视DVD,车载数码产品,另外如笔记本电脑,手机,PMP等移动设备也都有应用。 其产品的低档系列,以其优良侦测精度和优势的价格,尤其适合玩具类等产品开发应用。(4) 精电电子设备研发生产的颜色识别传感器、色标传感器系列产品,作为国最专业的光学测量与检测设备研发与生产厂家特别在辨色识别,激光测距,光纤的技术上处于领先地位,运用了当今先进的数字化背景抑制技术,大大提高了测量精度和抗干扰能力,因为有这样的特点,使得该公司产品在国市场有相当占有率,依靠合理的价格更适合国市场的服务理念成为少数几家能与国外顶级品牌抗衡的高科技企业。目前生产的超高功率RGB数字光纤传感器在检测时的方便性为一般传感器望尘莫与, RGB 颜色传感器利用数模转换的高精度放大器,成为业界最佳的色彩辨识,即使颜色上的细微差异或高光泽目标物也能够轻易的检测。1.3本论文的主要工作与意义本文以色彩识别系统设计为目的,采用AT89S52单片机为核心,利用TCS3200颜色传感器和LCD1602建立起来的。文中给出整个系统的设计思路,包括,根据对三原色的感应原理和TCS3200颜色传感器识别颜色的原理的分析,设计出一个合适的可行的实验环境。其次,利用TCS3200颜色传感器,在合适的环境下,对被测物体进行检测,将测得的数据进行A/D转换,转化成数字量。最后,将转化后的数字量送到AT89S52单片机进行处理,得到被测物体所包含的RGB三原色的颜色值,之后利用LCD1602显示出来。本文研究的色彩识别系统的意义在于降低了色彩识别的难度,而且检测结果能准确可信,将有利于自动化行业以与相关行业的发展,同时为这个领域以后的研究提出自己的一点见解。另外,文中实现的颜色识别系统可用于机器人比赛的视觉识别系统。2 颜色识别与颜色传感器技术介绍2.1 色彩识别正如我们所知道的那样,色彩实际上是频率连续的电磁波,理论上色彩是无限的,但是人们能分辨的色彩是有限的,而且存在着个体差异。专业人士在设计一个色彩识别系统的时候,会很仔细地以5%甚至更小的区别来仔细调整色彩之间的比值。当这些类似色并排在一起时,即使是没有经过训练的普通人,除了色盲意外,都能够看出它们之间的区别。但是当一个色彩识别系统被确定并且单独展现时,普通人是无法区别出这5%什么更大的差异的。因此大多数人会简单的将他们所看到的某个色彩归类到他们能用简单语言描述的一类颜色,比如红、黄、白,或在这个基础上加以设当的区分,比如橘黄,有点发白的橘黄等。这种普通人感知的色彩可以被看作围绕着一个核心色的一个一个的区间,在这个区间中的所有颜色在色彩识别的时候,都会被看作是一种色彩。初中同一色彩识别区间的所有色彩尽管值不一样,但是对于受众而言是一样的。2.2 色彩识别算法2.2.1色彩识别的应用在现今的工业化社会中,色彩识别被广泛的应用于各行各业之中,如:各种物体表面颜色识别(产品包装色标检测,产品外表特征颜色的检测,液体溶液颜色变化过程的检测与控制,等等)。又如:图书馆使用颜色区分对文献进行分类,能够极大的提高排架管理和统计等工作;在包装行业,产品包装利用不同的颜色或装潢来表示其不同的性质或用途;在品牌的形象设计和品牌推广的竞争中,色彩系统是一个比较重要的部分,设计师都会花费大量的时间细致地调整不同色彩搭配之间的组合关系,以达到更好的视觉效果。2.2.2色彩识别一般算法(1) 色彩空间通常所看到的物体的颜色, 实际上是物体表面吸收了照射到它上面的白光(日光)中的一部分有色成分,而反射出的另一部分有色光在人眼中的反应。任何一种颜色都可以用三种基本颜色按照不同的比例混合得到。这里介绍一种最典型的颜色模型,即RGB模型。如图2.1所示,在这个颜色模型中, 3个轴分别为R、G、B。原点对应的为黑色(0, 0, 0),离原点最远的顶点对应白色(255, 255, 255)。 由黑到白的灰度分布在从原点到最远顶点间的连线上, 正方体的其他六个角点分别为红、 黄、绿、青、蓝、和品红。需要注意的一点是,RGB颜色模型所覆盖的颜色域取决于显示设备因光电的颜色特性。每一种颜色都有唯一的RGB值与它对应。图2.1 RGB颜色模型(2) 白平衡算法颜色实际就是物体对光的反射或投射而表现出来在人眼中的反映, 而 TCS3200 就是通过分别检测一种颜色反映出来的光的红、绿、蓝分量, 通过把光强线性转换为频率信号, 量化出R、G、B值, 从而计算出颜色。值得注意的是, 不同的光线通过物体反映出来的光强是不同的, 而且非标准白光 (RGB三者不相等)在物体上反映出来的光强分量也是不同的。为解决这个问题,就要进行白平衡, 即首先测量出基准光源的RGB光强值, 再测量出在标准光源下物体所反映出的光强值,两者之比就是物体的反射(或透射)性质, 即物体的实际颜色, 如公式(1), (2), (3):R=P物红/P源红 (1)G=P物绿/P源绿 (2)B=P物蓝/P源蓝 (3)由于在 RGB 坐标下的颜色标准坐标为 0-255 之间,所以把所得结果乘以 255,即得到标准的 RGB 值。 透明物体直接测量光源的光强-频率值,不透明物体需要用白纸测量反射光源。2.3颜色传感器技术2.3.1颜色检测的难点物体颜色信息十分广泛,颜色的确定需要色调、明度和饱和度三大要素或三原色(红绿蓝)的刺激值。影响颜色检测准确度的参数主要有:照射光、物体反射、光源方位、观测方位和传感器性能等,任何一个参数发生变化都会导致观察到的颜色发生变化。(1)光源的影响照射光包含有太和外界杂散光,太阳照射角度、云层厚度和其它天气条件都会导致照射光发生变化,从而导致被测物体颜色发生变化。为弥补光源变化带来的测量误差,Judd等人在1964年提出了照射光修正模型,但尽管如此,照射光引起物体颜色检测的误差仍不容忽视。(2) 光源方位和观测方位的影响光源方位,也就是被测物体指向光源的法线方向,它决定了有多少太或外界杂散光作为入射光。观测方位是指被测物体指向传感器的法线方向,它决定了反射到传感器中的光强。(3) 被测物表面反射状况的影响传感器探头与被测物之间的距离影响着输出信号,可能会造成不同颜色信号的交叉,形成测量误差,所以存在某一最佳距离对输出特性影响最小,以保证颜色与输出信号的一一对应关系。被测物表面的较明显凹凸区域也会给输出信号带来较大的误差,为此 , Phong,Shafer和 Nayar等人先后提出了反射模型以弥补测量误差。2.3.2颜色传感器(1)RGB 颜色传感器RGB颜色传感器对相似颜色和色调的检测可靠性较高。它的测量原理示意图如图2.2所示。图2.2RGB颜色传感器在三个光电二极管上贴上三基色滤色片,三种光通过同一透镜发射后被目标物体反射,根据测出的数据求出颜色的成分。由于这种颜色检测法是通过测量构成物体颜色的三基色实现颜色检测的,所以精密度极高,能准确区别极其相似的颜色,甚至一样颜色的不同色调。RGB颜色传感器有两种测量模式:一种是分析红、绿、蓝光的比例。因为检测距离无论怎样变化,只能引起光强的变化,而三种颜色光的比例不会变,因此,即使在目标有机械振动的场合也可以检测;第二种模式是利用红绿蓝三基色的反射光强度实现检测目的 ,利用这种模式可实现微小颜色判别的检测,但传感器会受目标机械位置的影响。无论应用哪种模式,大多数 RGB 颜色传感器都有导向功能,使其非常容易设置。这种传感器大多数都有建的某种形式的图表和阈值,利用它可确定操作特性。利用全色色敏器件与相关分析手段可以较精确地测定颜色,一般来说,它至少需要三个光电二极管以与三个相应的滤光器,以获得颜色的三刺激值,因此结构和电路都比较复杂。(2) 色差传感器在一些实际应用中(如分拣、 质量监控等行业),并不需要确切了解被测物的具体颜色,而只需要对两个物体的色差进行识别与判断,区别出从一种颜色到另一种颜色的变化。例如,对家用电器、汽车外壳的色彩管理,对纸浆、油漆、彩色钢板等色彩进行读取和控制,只要检测出两种颜色存在一定的色差,就能将它们区分开来。色差传感器已发展出硅双结、 光纤、有机材料等多种,由于其价格便宜,动态响应效果好,能实现在线实时测量,所以除染色等特殊行业外,工业上一般都采用色差传感器。硅双结型颜色传感器:硅双结型颜色传感器的结构与主要特性如图2.3所示。图2.3 硅颜色传感器的结构原理图与特性曲线图2.3(a)中所示的N-P-N是结深不同的两个P-N结二极管,放大作用很小。浅结二极管D1是N+- P结;深结二极管D2是P-N结,当有入射光照射时,N+,P,N每个区域与其间的势垒区中都有光子吸收,根据硅的光学性质,蓝紫光部分吸收系数大,经很短距离已吸收完毕,因此浅结光电二极管对蓝紫光的灵敏度高,而红外光的透射深度则一直达到深结区,因此深结光电二极管对红外光的灵敏度高。这就是说此结构中的不同区域对同一波长入射光具有不同的灵敏度,这一特性提供了将这种器件用于颜色识别的可能性。在不同波长的光照射下,两只光电二极管电流的比值I2/I1不同, I1是浅结二极管的短路电流, I2是深结二极管的短路电流。由于单色入射光的波长与色敏器件的短路电流比的对数存在近似的线性关系,即,式中A和B值通过对预先测定数据拟合得到。所以根据短路电流比,如图 2.3(b) 所示,就可以得到入射光的波长。这种传感器的突出优点是:短路电流比与光强无关,几乎只与入射光波长相关。但色敏器件的输出电流很小,很容易受外界的干扰,因此需要对放大电路进行屏蔽。液晶颜色传感器:液晶颜色传感器由红外玻璃滤色片、 电子控制双折射液晶和硅 P2N 结光电二极管组成,其结构截面如图2.4 所示。图2.4颜色传感器结构传感器的光灵敏度可近似表示为Tr() Ir()I()Ph() ,式中Tr()为传感器的光谱灵敏度;Ir()为透过红外滤色片的光强;I()为透过液晶单元的光强;Ph()为光电二极管检测到的光强;为入射光的波长。透过液晶的光强 I()是加在液晶两端电压的函数,即I () = I0()sin2 (2) sin2 (R/) ,R = ( ne - n0) d Rb式中d为液晶层的厚度;ne为液晶层中非常光线的折射率; n0为液晶层中寻常光线的折射率; Rb为聚酯薄膜中的光延迟; R为液晶单元有效的光延迟; I0()为射到液晶上的入射光强度;为液晶分子轴在电极上的投影方向和起偏振器方向夹角。其测量原理是利用红外玻璃滤色片滤掉入射光中的红外成分,改变液晶两端的电压,可以改变液晶层中的非常光折射率 ne ,从而改变光强 I()。光电二极管检测到光强与存储在计算机中的颜色数据进行比较,就可知所测物体的颜色。用该传感器检测采用同样材料编织而穿着方式不同的两件衣服,传感器输出电压的峰值有差异,这意味着这种传感器灵敏,可分辨出非常小的颜色差别。光纤颜色传感器:光纤是20世纪70年代为通信而发展的一种新型材料,与其它材料相比,光纤具有良好的传光性能和较宽的频带,因而被广泛地应用在通信领域中。除此之外,光纤本身还是一个敏感元件,即光在光纤中传输时,光的特性如振幅、波长(颜色)、相位、偏振态等将随检测对象变化而相应变化。光从光纤射出时,光的特性得到调制,通过对调制光的检测,便能感知外界的信息。为充分发挥光纤的这一特性,自70年代中期以来出现了许多特殊的光纤传感器,如光纤强度、相位、(波长)颜色传感器等。光纤颜色传感器的装置如图2.5 所示。图2.5光纤颜色传感器的实验装置光源发出的光由透镜耦合到光纤束,在光纤束的出射端经分光板反射到达被测物,RGB 标准滤色片同装在一个旋转盘上,当旋转盘转动时,物体反射的不同波长的光相继经过滤色片到达光探测器,从光敏管电流强弱,即可反映被测图样颜色。与传统传感器相比它具有以下优点:(1) 利用光纤束解决了普遍存在的光能量和光源散热问题;(2) 结构小而紧凑, 便于安装, 可实现在线检测,传感头高度密封,适于恶劣条件,具有可靠的抗干扰措施;(3) 响应速度快,便于与计算机接口自动地判断或记数。有机静电感应颜色传感器:近年来,已有越来越多的研究者提出采用有机材料制成光电传感器,这种传感器成本低,应用围广,但目前还只处于实验室研究阶段。1986年Tang曾报道了利用有机材料制成光电转换效率很高的太阳能电池,由此可见有机材料具有良好的光敏性能,所以有机材料颜色传感器被认为是很有发展前景的一种传感器。Kudo利用两种染料制成了一种P型有机静电感应传感器(static induction t ransistor ,SIT) ,并研究了其光电特性。图2.6是 Kudo制成的有机静电感应颜色传感器的结构图。有机静电感应颜色传感器有两个有机半导体层,分别是酞青蓝和部化青两种染料,酞青蓝和部化青膜的厚度分别为80nm和140nm,它们通过真空沉降方法覆盖在涂有锡铟氧化物的玻璃片上,酞青蓝和部化青膜之间具有P型半导体特性。有机染料膜上面覆盖一层金属金(Au)并与锡铟氧化层形成测量电极,酞青蓝和部化青膜之间有一非常薄的铝电极。当加载在铝电极上的电压增加时,测量电极之间的电流增加,反之,测量电极间的电流减少。Kudo对有机静电感应颜色传感器进行了光敏实验,光从部化青膜侧照射,在两个测量电极上加载2.5V的输入电压,电极间的测量电流IDS则随着加载在铝电极上的电压(VG)变化而变化的,测量结果如图2.7所示。图2.6 有机静电感应传感器结构图2.7 有机静电感应传感器的光敏特性从图2.7中还可以看出,IDS 在600nm时有一峰值,这说明酞青蓝层对600nm光的吸收性非常强。从 Kudo的实验结果可知,有机材料的光敏特性不仅与电压VG有关,还与有机材料本身有关,所以利用有机材料完全有希望发展出一种新型的价格低廉且性能优良的颜色传感器。2.4 本章小结 本章对色彩识别与各种颜色传感器技术进行了深入的介绍,主要包括色彩识别的一般算法(白平衡算法),以与色彩识别在现实社会中的一些具体应用,另外还介绍了几种主要的传感器技术,为后面的色彩识别系统的设计做好了准备。3 基于TCS3200的硬件设计 本论文主要是研究和设计色彩识别系统。本系统是以AT89S52单片机为核心,以TCS3200颜色传感器和LCD1602为子系统建立起来的。3.1 AT89S52单片机简介本系统采用ATMEL公司生产的AT89S52单片机作为微处理器。AT89S52与MCS-51系列单片机完全兼容,它采用静态时钟方式,可以大大节省耗电量。AT89S52是一个低电压,高性能CMOS 8位单片机,片含8k bytes的可反复擦写的Flash只读程序存储器和256bytes的随机存取数据存储器(RAM),功能强大的AT89S52单片机已经应用于较复杂的系统控制场合。AT89S52有40个引脚,32个外部双向输入/输出(I/O)端口,同时含2个外中断口,3个16位可编程定时计数器,2个全双工串行通信口,2个读写口线,AT89S52可按照常规方法进行编程,亦可在线编程。其将通用之微处理器与Flash存储器结合,特别是可反复擦写的FLASH存储器可有效降低开发成本。AT89C52与AT89S52之别,在于C与S, C表示需用并行编程器下载(接线多且复杂),S表示可支持ISP下载,可在89S52系统板上面预留ISP下载接口,AT89S52引脚如图3.1所示,实物图如图3.2。图3.1 S52单片机管脚图 图3.2 S52单片机实物图3.1.1 AT89S52的主要性能和参数(1)与MCS-51单片机完全兼容的指令和引脚排列以与工作特性。(2)片程序存储器含8K可重复擦写的Flash程序存储器。(3)片数据存储器含256字节的RAM。(4)3个可编程的16位计数器(定时器)和32个可编程I/O口线。(5)串行口是具有一个全双工的可编程的串行通信口。(6)中断系统是具有8个中断源、6个中断矢量、2个优先权的中断机构。(7)低功耗模式有空闲模式和掉电模式。(8)编程频率是3-24MH,编程启动电流是1mA。(9)AT89S52的工作电压为5V。3.1.2 AT89S52的主要功能图3.3 52单片机管脚功能图P0口8位漏极开路之双向I/O口。作为输出口,每位能驱动8个TTL逻辑电平。对P0端口写“1”时,引脚用作高阻抗输入。访问外部程序和数据存储器时,P0口亦被作为低8位地址/数据复用。在这种模式下,P0不具有部上拉电阻。在FLASH编程时,P0口亦用来接收指令字节;在程序校验时,输出指令字节。程序校验时,需外部上拉电阻。P1口有部上拉电阻的8位双向I/O 口,P1 输出缓冲器能驱动4 个 TTL 逻辑电平。对P1 端口写“1”时,部上拉电阻把端口拉高,此时可作输入口用。作为输入使用时,被外部拉低的引脚由于部电阻的原因,将输出电流(IIL)。对P1 端口写“1”时,部上拉电阻把端口拉高,此时可作输入口用。作输入用时,被外部拉低的引脚因部电阻,将输出电流(IIL)。此外,P1.0与P1.2分别作定时器/计数器2之外部计数输入(P1.0/T2)与时器/计数器2之触发输入(P1.1/T2EX),详见表3.1所示。在flash编程与校验时,P1口接收低8位地址字节。 表3.1 P1口的第二功能引脚号第二功能P1.0T2(定时器/计数器T2的外部计数输入),时钟输出P1.1T2EX(定时器/计数器T2的捕捉/重载触发信号和方向控制)P1.5MOSI(在系统编程用)P1.6MISO(在系统编程用)P1.7SCK(在系统编程用)P2口有部上拉电阻的8 位双向I/O口,P2输出缓冲器能驱动4个TTL 逻辑电平。对P2 端口写“1”时,部上拉电阻把端口拉高,此时可作输入口。作输入用时,被外部拉低的引脚因部电阻,将输出电流(IIL)。 在访问外部程序存储器或用16位地址读取外部数据存储器(例如执行MOVX DPTR) 时,P2口送出高八位地址。在这种应用中,P2口用很强的部上拉发送1。在用8位地址(如MOVX RI)访问外部数据存储器时,P2口输出P2锁存器之容。在FLASH编程与校验时,P2口亦接收高8位地址字节与一些控制信号。 P3口有部上拉电阻的8位双向I/O口,p3输出缓冲器能驱动4个TTL 逻辑电平。对P3端口写“1”时,部上拉电阻把端口拉高,此时可用作输入口。作输入用时,被外部拉低的引脚因部电阻之原因,将输出电流(IIL)。P3口亦作为AT89S52特殊功能(第二功能)用,如表3.2所示。在FLASH编程与校验时,P3口亦接收些控制信号。此外,P3口亦接收些用于FLASH闪存编程与程序校验的控制信号。表3.2 P3口的第二功能引脚第二功能引脚第二功能P3.0RXD(串行输入口)P3.4TO(定时/计数器0)P3.1TXD(串行输出口)P3.5T1(定时/计数器1)P3.2INTO(外中断0)P3.6WR(外部数据存储器写选通)P3.3INT1(外中断1)P3.7RD(外部数据存储器读选通)RST复位输入。振荡器工作时,RST引脚有两个机器周期以上高电平将是单片机复位。 ALE/PROG访问外部程序存储器或数据存储器时,ALE(地址锁存允许)输出脉冲用于锁存地址的低8位字节。一般,ALE仍以时钟振荡频率的1/6输出固定之脉冲信号,故它可对外输出时钟或用于定时目的。需注意:每当访问外部数据存储器时将跳过一个ALE脉冲。对FLASH存储器编程期间,该引脚亦用于输入编程脉冲(PROG)。若必要,可通过对特殊功能寄存器(SFR)区中的8EH单元的D0位置位,可禁止ALE操作。该位置位后,只有一条MOVX与MOVC指令方能将ALE激活。此外,该引脚会被微弱拉高,单片机执行外部程序时,应设置ALE禁止位无效。PSEN程序储存允许(PSEN)输出是外部程序存储器之读选通信号,AT89S52由外部程序存储器取指令(或数据)时,每个机器周期两次PSEN有效,即输出两个脉冲,在此期间,当访问外部数据存储器,将跳过两次PSEN信号。 EA/VPP外部访问允许,要CPU仅访问外部程序存储器(地址为0000H-FFFFH),EA端须保持低电平(接地)。需注意:若加密位LB1被编程,复位时部会锁存EA端状态。若EA端为高电平(接Vcc端),CPU则执行部程序存储器之指令。 FLASH存储器编程时,该引脚加上+12V的编程允许电源Vpp,当然这须是该器件是使用12V编程电压Vpp。XTAL1振荡器反相放大器与部时钟发生电路之输入端。XTAL2振荡器反相放大器之输出端。3.2 TCS3200颜色识别原理简介3.2.1 TCS3200芯片的结构框图与特点TCS3200是TAOS公司推出的可编程彩色光到频率的转换器,是TCS32000的升级版,二者功能基本一致,它把可配置的硅光电二极管与电流频率转换器集成在一个单一的CMOS电路上,同时在单一芯片上集成了红绿蓝(RGB)三种滤光器,是业界第一个有数字兼容接口的RGB彩色传感器,TCS3200的输出信号是数字量,可以驱动标准的TTL或CMOS逻辑输入,因此可直接与微处理器或其他逻辑电路相连接,由于输出的是数字量,并且能够实现每个彩色信道10位以上的转换精度,因而不再需要A/D转换电路,使电路变得更简单,图3.4是TCS3200的引脚和功能框图。图3.4 TCS3200的引脚和功能图TCS3200采用8引脚的SOIC表面贴装式封装,在单一芯片上集成有64个光电二极管,这些二极管分为四种类型,其16个光电二极管带有红色滤波器;16个光电二极管带有绿色滤波器;16个光电二极管带有蓝色滤波器,其余16个不带有任何滤波器,可以透过全部的光信息,这些光电二极管在芯片是交叉排列的,能够最大限度地减少入射光辐射的不均匀性,从而增加颜色识别的精确度;另一方面,一样颜色的16个光电二极管是并联连接的,均匀分布在二极管阵列中,可以消除颜色的位置误差。工作时,通过两个可编程的引脚来动态选择所需要的滤波器,该传感器的典型输出频率围从2Hz500kHz,用户还可以通过两个可编程引脚来选择100、20或2的输出比例因子,或电源关断模式。输出比例因子使传感器的输出能够适应不同的测量围,提高了它的适应能力。例如,当使用低速的频率计数器时,就可以选择小的定标值,使TCS3200的输出频率和计数器相匹配。从图3.4可知:当入射光投射到TCS3200上时,通过光电二极管控制引脚S2、S3的不同组合,可以选择不同的滤波器;经过电流到频率转换器后输出不同频率的方波(占空比是50),不同的颜色和光强对应不同频率的方波;还可以通过输出定标控制引脚S0、S1,选择不同的输出比例因子,对输出频率围进行调整,以适应不同的需求。 下面简要介绍TCS3200芯片各个引脚的功能与它的一些组合选项。S0、S1用于选择输出比例因子或电源关断模式;S2、S3用于选择滤波器的类型;OE反是频率输出使能引脚,可以控制输出的状态,当有多个芯片引脚共用微处理器的输出引脚时,也可以作为片选信号,OUT是频率输出引脚,GND是芯片的接地引脚,VCC为芯片提供工作电压,表3.3是S0、S1与S2、S3的可用组合。表3.3 S0、S1与S2、S3的组合选项S0S1输出频率定标S2S3滤波器类型LL关断电源LL红色LH2%LH蓝色HL20%HL无HH100%HH绿色3.2.2 TCS3200识别颜色的原理由上面的介绍可知,这种可编程的彩色光到频率转换器适合于色度计测量应用领域,如彩色打印、医疗诊断、计算机彩色监视器校准以与油漆、纺织品、化妆品和印刷材料的过程控制和色彩配合。下面以TCS3200在液体颜色识别中的应用为例,介绍它的具体使用。首先了解一些光与颜色的知识。(1)三原色的感应原理 通常所看到的物体颜色,实际上是物体表面吸收了照射到它上面的白光(日光)中的一部分有色成分,而反射出的另一部分有色光在人眼中的反应。白色是由各种频率的可见光混合在一起构成的,也就是说白光中包含着各种颜色的色光(如红R、黄Y、绿G、青V、蓝B、紫P)。根据德国物理学家赫姆霍兹(Helinholtz)的三原色理论可知,各种颜色是由不同比例的三原色(红、绿、蓝)混合而成的。(2)TCS3200识别颜色的原理 由三原色感应原理可知,如果知道构成各种颜色的三原色的值,就能够知道所测试物体的颜色。对于TCS3200来说,当选定一个颜色滤波器时,它只允许某种特定的原色通过,阻止其他原色的通过。例如:当选择红色滤波器时,入射光中只有红色可以通过,蓝色和绿色都被阻止,这样就可以得到红色光的光强;同时,选择其他的滤波器,就可以得到蓝色光和绿色光的光强。通过这三个值,就可以分析投射到TCS3200传感器上的光的颜色。(3)白平衡和颜色识别原理 白平衡就是告诉系统什么是白色。从理论上讲,白色是由等量的红色、绿色和蓝色混合而成的;但实际上,白色中的三原色并不完全相等,并且对于TCS3200的光传感器来说,它对这三种基本色的敏感性是不一样的,导致TCS3200的RGB输出并不相等,因此在测试前必须进行白平衡调整,使得TCS3200对所检测的白色中的三原色是相等的。进行白平衡调整是为后续的颜色识别做准备。在本装置中,白平衡调整的具体步骤和方法如下:将空的试管放置在传感器的上方,试管的上方放置一个白色的光源,使入射光能够穿过试管照射到TCS3200上;根据前面所介绍的方法,依次选通红色、绿色和蓝色滤波器,分别测得红色、绿色和蓝色的值,然后就可计算出需要的3个调整参数。当TCS3200识别颜色时,就用这3个参数对所测颜色的R、G和B进行调整。这里有两种方法来计算调整参数:1、依次选通三颜色的滤波器,然后对TCS3200的输出脉冲依次进行计数。当计数到255时停止计数,分别计算每个通道所用的时间,这些时间对应于实际测试时TCS3200每种滤波器所采用的时间基准,在这段时间所测得的脉冲数就是所对应的R、G和B的值。2、设置定时器为一固定时间 (例如10ms),然后选通三种颜色的滤波器,计算这段时间TCS3200的输出脉冲数,计算出一个比例因子,通过这个比例因子可以把这些脉冲数变为255。在实际测试时,室外同样的时间进行计数,把测得的脉冲数再乘以求得的比例因子,然后就可以得到所对应的R、G和B的值。3.3 LCD1602简介液晶显示器简称LCD显示器,它是利用液晶经过处理后能改变光线的传输方向的特性显示信息的。液晶显示器具有体积小、重量轻、功耗极低、显示容丰富等特点,在单片机应用系统中得到了日益广泛的应用。液晶显示器按其功能可分为三类:笔段式液晶显示器、字符点阵式液晶显示器和图形点阵式液晶显示器。前两种可显示数字、字符和符号等,而图形点阵式液晶显示器还可以显示汉字和任意图形,达到图文并茂的效果。字符型液晶显示器模块是一种专门用于显示字母、数字、符号等的点阵式液晶显示模块。它是由若干个5*7或5*11等点阵符位组成的,每一个点阵字符位都可以显示一个字符。点阵字符位之间有一定点距的间隔,这样就起到了字符间距和行距的作用。要使用点阵型LCD显示器,必须有相应的LCD控制器、驱动器来对LCD显示器进行扫描、驱动,以与一定空间的ROM和RAM来存储写入的命令和显示字符的点阵。现在往往将LCD控制器、驱动器、RAM、ROM和LCD显示器连接在一起,称为液晶显示模块LCM。使用时只要向LCM送入相应的命令和数据就可以实现显示所需的信息。目前市场上常用的有16字*1行、16字*2行、20字*2行和40字*2行等的字符液晶显示模块。这些LCM虽然显示字符数各不一样,但是都具有一样的输入输出界面。本文将介绍16*2字符型液晶显示模块CA1602A的应用。3.3.1 字符型液晶显示模块CA1602A的外观与引脚CA1602A字符型液晶显示模块是2行16字的5*7点阵图形字符的液晶显示器,它的外观形状如图3.5。图3.5 CA1602A的外观CA1602A采用标准的16脚接口,各引脚情况如下:第1脚:Vss,电源地第2脚:Vcc,+5v电源第3脚:Vo,液晶显示偏压信号第4脚:RS,数据/命令选择端,高电平时选择数据寄存器,低电平时选择指令寄存器。第5脚:RW:读/写选择端,高电平时进行读操作,低电平时进行写操作。但RS和RW共同为低电平时可以写入指令或者显示地址;当RS为低电平RW为高电平时可以读忙信号;当RS为高电平RW为低电平时可以写入数据。第6脚:E,使能端,当E端由高电平跳变成低电平时,液晶模块执行命令。第7-14脚:D0-D7,为8位双向数据线。第15脚:A,背光源正极第16脚:K,背光源负极3.3.2 指令格式与指令功能LCD控制器
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 商业管理 > 商业计划


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!