资源描述
圆的圆的 参数方程参数方程一般地,在平面直角坐标系中,如果曲线上一般地,在平面直角坐标系中,如果曲线上任意一点的坐标任意一点的坐标x,y都是某个变数都是某个变数t的函数的函数并且对于并且对于t的每一个允许值,由方程组(的每一个允许值,由方程组(2)所确定的点所确定的点M(x,y)都在这条曲线上,那么方都在这条曲线上,那么方程程(2)就叫做这条曲线的就叫做这条曲线的参数方程参数方程,联系变,联系变数数x,y的变数的变数t叫做叫做参变数参变数,简称,简称参数参数,相对,相对于参数方程而言,直接给出点的坐标间关系于参数方程而言,直接给出点的坐标间关系的方程叫做的方程叫做普通方程普通方程。)2.(.)()(tgytfx知识回顾:知识回顾:yxorM(x,y)0M2、圆的参数方程、圆的参数方程)()(sincossin,cos),(速圆周运动的时刻质点作匀有明确的物理意义程。其中参数的圆的参数方,半径为这就是圆心在原点为参数即角函数的定义有:,那么由三,设,那么,坐标是转过的角度是,点如果在时刻trOttrytrxrytrxtrOMtyxMMt转过的角度。的位置时,到逆时针旋转绕点的几何意义是其中参数的圆的参数方程,半径为这也是圆心在原点为参数为参数,于是有,也可以取考虑到00)(sincosOMOMOOMrOryrxt由于选取的参数不同,圆有不同的参由于选取的参数不同,圆有不同的参数方程,一般地,同一条曲线,可以数方程,一般地,同一条曲线,可以选取不同的变数为参数,因此得到的选取不同的变数为参数,因此得到的参数方程也可以有不同的形式,形式参数方程也可以有不同的形式,形式不同的参数方程,它们表示不同的参数方程,它们表示 的曲线可的曲线可以是相同的,另外,在建立曲线的参以是相同的,另外,在建立曲线的参数参数时,要注明参数及参数的取值数参数时,要注明参数及参数的取值范围。范围。例例2 如图,圆如图,圆O的半径为的半径为2,P是圆上是圆上的动点,的动点,Q(6,0)是是x轴上的定点,轴上的定点,M是是PQ的中点,当点的中点,当点P绕绕O作匀速圆周运作匀速圆周运动时,求点动时,求点M的轨迹的参数方程。的轨迹的参数方程。yoxPMQ)(sin3cossin2sin2, 3cos26cos2),sin2 ,cos2(,),(为参数的轨迹的参数方程是所以,点由中点坐标公式得:的坐标是则点,的坐标是解:设点yxMyxPxOPyxM圆的参数方程的一般形式圆的参数方程的一般形式00(,)o xyr那么,圆心在点半径为 的圆的参数方程又是怎么样的呢?2220000cos()s()()inxxyxxryyyrr对应的普通方程为为参数例、已知圆方程例、已知圆方程x x2 2+y+y2 2 +2x-6y+9=0 +2x-6y+9=0,将它,将它化为参数方程。化为参数方程。解:解: x x2 2+y+y2 2+2x-6y+9=0+2x-6y+9=0化为标准方程,化为标准方程, (x+1x+1)2 2+ +(y-3y-3)2 2=1=1,参数方程为参数方程为sin3cos1yx(为参数为参数)径,并化为普通方程。表示圆的圆心坐标、半所为参数、指出参数方程)(sin235cos22yx22(5)(3)4xy_4)0(sin2cos3,则圆心坐标是是的直径为参数,、圆rrryrrx(2,1)xy4、如图:写出该图象的参数方程:作业:作业: P26 4、 5
展开阅读全文