资源描述
LINDO、LINGO入门教程要学好用这两个软件最好的办法就是学习他们自带的HELP文件。下面拟举数例以说明这两个软件的最基本用法(例子均选自张莹运筹学基础)。例.(选自运筹学基础.汽油混合问题,线性规划问题)一种汽油的特性可用两个指标描述:其点火性用“辛烷数”描述,其挥发性用“蒸汽压力”描述。某炼油厂有四种标准汽油,设其标号分别为,其特性及库存量列于下表中,将上述标准汽油适量混合,可得两种飞机汽油,某标号为,这两种飞机汽油的性能指标及产量需求列于表中。问应如何根据库存情况适量混合各种标准汽油,使既满足飞机汽油的性能指标,而产量又为最高。表辛烷数蒸汽压力(g/cm2)库存量.7.11*10(-2).11.38*10(-2).5.69*10(-2).28.45*10(-2)(1 g/cm2=98Pa)表辛烷数蒸汽压力(g/cm2)产量需求()=建模过程略(详见运筹学基础)目标函数:max z=x1+x2+x3+x4约束条件:x5+x6+x7+x8=250000x1+x5=380000x2+x6=265200x3+x7=408100x4+x8=02.85x5-1.42x6+4.27x7-18.49x8=016.5x1+2.0x2-4.0x3+17x4=07.5x5-7.0x6-13.0x7+8.0x8=0xj=0(j=1,2.,8)下面我们就用LINDO来解这一优化问题。输入语句:max(不区分大小写) x1+x2+x3+x4ST(大写或写subject to)x5+x6+x7+x8=250000x1+x5=380000x2+x6=265200x3+x7=408100x4+x8=02.85x5-1.42x6+4.27x7-18.49x8=016.5x1+2.0x2-4.0x3+17x4=07.5x5-7.0x6-13.0x7+8.0x8=0end然后再按运算符键即可得结果。LINDO是规定j非负的,我们可发现输入方式与我们的数学书写的形式基本一致,运算后,计算机会问您是否需要灵敏度分析,我们选择是,结果如下:LP OPTIMUM FOUND AT STEP 6 OBJECTIVE FUNCTION VALUE 1) 933400.0 VARIABLE VALUE REDUCED COST X1 161351.734375 0.000000 X2 265200.000000 0.000000 X3 408100.000000 0.000000 X4 98748.265625 0.000000 X5 218648.265625 0.000000 X6 0.000000 0.000000 X7 0.000000 0.000000 X8 31351.734375 0.000000 ROW SLACK OR SURPLUS DUAL PRICES 2) 0.000000 -1.000000 3) 0.000000 1.000000 4) 0.000000 1.000000 5) 0.000000 1.000000 6) 0.000000 1.000000 7) 0.000000 0.000000 8) 43454.000000 0.000000 9) 3239024.250000 0.000000 10) 1890675.875000 0.000000 NO. ITERATIONS= 6 RANGES IN WHICH THE BASIS IS UNCHANGED: OBJ COEFFICIENT RANGES VARIABLE CURRENT ALLOWABLE ALLOWABLE COEF INCREASE DECREASE X1 1.000000 0.000000 1.154137 X2 1.000000 INFINITY 0.000000 X3 1.000000 INFINITY 0.000000 X4 1.000000 0.000000 0.000000 X5 0.000000 1.154137 0.000000 X6 0.000000 0.000000 INFINITY X7 0.000000 0.000000 INFINITY X8 0.000000 0.000000 0.000000 RIGHTHAND SIDE RANGES ROW CURRENT ALLOWABLE ALLOWABLE RHS INCREASE DECREASE 2 250000.000000 186222.062500 234752.984375 3 380000.000000 234752.984375 15247.017578 4 265200.000000 30601.410156 265200.000000 5 408100.000000 156685.250000 10176.581055 6 130100.000000 2350.135254 36184.207031 7 0.000000 43454.000000 669046.000000 8 0.000000 43454.000000 INFINITY 9 0.000000 3239024.250000 INFINITY 10 0.000000 1890675.875000 INFINITY下面给出其结果的一般解释:“LP OPTIMUM FOUND AT STEP 6”表示LINDO在(用单纯形法)次迭代或旋转后得到最优解。“OBJECTIVE FUNCTION VALUE 1)933400.0”表示最优目标值为933400。“VALUE”给出最优解中各变量的值。“SLACK OR SURPLUS”给出松弛变量的值。上例中SLK 2= 第二行松弛变量(模型第一行表示目标函数,所以第二行对应第一个约束)“REDUCE COST”列出最优单纯形表中判别数所在行的变量的系数,表示当变量有微小变动时,目标函数的变化率,其中基变量的reduce cost 值应为,对于非基变量j相应的reduce cost值表示j增加一个单位(此时假定其他非基变量保持不变)时目标函数减小的量(max 型问题)。上例中:X1 对应的 reduce cost 值为,表示当X1=1 时,目标函数值不变。“DUAL PRICE”(对偶价格)列出最优单纯形表中判别数所在行的松弛变量的系数,表示当对应约束有微小变动时,目标函数的变化率,输出结果中对应每一个约束有一个对偶价格。若其数值为,表示对应约束中不等式右端项若增加一个单位,目标函数将增加个单位(max 型问题)。上例中:第二行对应的对偶价格值应为-表示当约束)X5 + X6 + X7 + X8250000变为)X5 + X6 + X7 + X8250001时,目标函数值933400-1933399当REDUCE COST 或DUAL PRICE 的值为。表示当微小扰动不影响目标函数。有时,通过分析DUAL PRICE,也可对产生不可行问题的原因有所了解。灵敏度分析:如果做敏感性分析,则系统报告当目标函数的费用系数和约束右端项在什么范围变化(此时假定其他系数保持不变)时,最优基保持不变。报告中INFINITY表示正无穷,如上例:目标函数中的变量系数为,当它在1-1.154137,1-0= -0.154137,1 变化时,最优基保持不变 。第一个约束右端项为250000,当它在250000-234752.984375,250000+186222.0625=15247.015625,436222.0625 范围变化时,最优基保持不变 。当您要判断表达式输入是否有错误时,也可以使用菜单“Reports“的”Picture“选项。若想获得灵敏度分析,可用“Reports“的”Rang“选项。若需显示单纯形表,可执行“Reports“的”Tab lean“选项。注意事项:) 目标函数及各约束条件之间一定要有“Subject to (ST) ”分开。) 变量名不能超过个字符。) 变量与其系数间可以有空格,单不能有任何运算符号(如乘号“”等)。) 要输入=约束,相应以代替即可。) 一般LINDO中不能接受括号“()“和逗号“,“,例:400(X1+X2) 需写成400X1+400X2;10,000需写成10000。) 表达式应当已经过简化。不能出现 2 X1+3 X2-4 X1,而应写成-X1+3 X2。例2(选自运P94习题2.4;整数规则)有四个工人,要分别指派他们完成四项不同的工作,每个人做各项工作所消耗的时间如表。问应该如何指派,才能使总的消耗时间为最小? 工作所耗时间工人 A B C D 甲 15 18 21 24 乙 19 23 22 18 丙 26 17 16 19 丁 19 21 23 17这是一道典型的整数规则问题。我们记派第I去做工作记为Xij注意到每人只能做一项工作。每项工作一人做。我们得到目标函数为约束条件: min 15x11+19x21+26x31+19x41+18x12+23x22+17x32+21x42+24x13+22x23+16x33+23x43+24x14+18x24+19x34+17x44STx11+x12+x13+x14=1x21+x22+x23+x24=1x31+x32+x33+x34=1x41+x42+x43+x44=1x11+x21+x31+x41=1x12+x22+x32+x42=1x13+x23+x33+x43=1x14+x24+x34+x44=1endint 16运行后我们可得到最优目标值为70当 ,其余为0时。(具体的Reports 我们略去)在用LINDO解整数规划(IP)问题时,只要在END后加上标识即可,其中解0/1规划的用命令。INT name 或 INT n (n 指前n 个变量标识为0/1型)解混合型整数规划则用GIN来标识。LINDO解整数规划对变量的限制为50个。(指LINDO 6.1学生版)。所以说,尽管LINDO对整数规划问题是很有威力。要有效地使用还是需要一定技术的。这是因为,人们很容易将一个本质上很简单的问题列成一个输入模型。从而有可能会导致一个冗长的分支定界计算。例3 用LINDO解目标规划由于LINDO不能直接求解目标规划问题,这是否就意味着LINDO失去了效力呢?不是的。由求解目标规划问题的有效算法序贯式算法可知其实目标规划我们常采取分解成前面二种办法而已。例如算:min a=(d1_+d1),(2d2+d3)G1:x1-10x2+d1_-d1=50G2:3x1+5x2+d2_-d2=20G3:8x1+6x2+d3_-d3=100xi(i=1,2),dj_,dj(j=1,2,3)=0先求目标函数的最优值min d1_+d1STx1-10x2+d1_-d1=503x1+5x2+d2_-d2=20end求得D1_+D1 的最优值为0然后再求min 2d2+d3STx1-10x2+d1_-d1=503x1+5x2+d2_-d2=208x1+6x2+d3_-d3=100d1_+d1=0end即可算得第二级最优值2d2+d3例4 LINDO虽亦可求解二次规划问题。(但我认为它在输入对不如用LINGO方便,用LINDO输入时要先作偏导数计算不如LINGO哪样可直接输入。(选自运筹学基础190.习题4.10min f(x)=(x1-1)2+(x2-2)2x2-x1=1x1+x2=0,x2=0先来说一说如何使用LINGO一般来说LINGO多用于解决大规模数学规划。用时要注意以下几点:(1) 每条语句后必须使用分号“;”结束。问题模型必须由MODEL命令开始,END结束。(2) 用MODEL命令来作为输入问题模型的开始,格式为MODEL:statement (语句)。(3) 目标函数必须由“min =”或“max =”开头。则上面的例子的输入就为modul:min=(x1-1)2+(x2-2)2;x2-1=1;x1+x2=2;end我们即可得到最优值0.5。当X1=0.5,X2=1.5,及灵敏度分析。我们还可得作图分析。对于大规模规划求解请参见LINGO的HELP文件。友情提示:部分文档来自网络整理,供您参考!文档可复制、编制,期待您的好评与关注!6 / 6
展开阅读全文