云南师范大学运动训练学考研复习资料

上传人:无*** 文档编号:69304181 上传时间:2022-04-05 格式:DOC 页数:48 大小:204.03KB
返回 下载 相关 举报
云南师范大学运动训练学考研复习资料_第1页
第1页 / 共48页
云南师范大学运动训练学考研复习资料_第2页
第2页 / 共48页
云南师范大学运动训练学考研复习资料_第3页
第3页 / 共48页
点击查看更多>>
资源描述
内部资料耐得住寂寞,经得起诱惑 运动训练学复习资料(云南师范大学研究生考试)运动生理绪论考纲要求 1、机体与环境的关系:刺激与反应,兴奋与抑制,兴奋性和阈。 2、稳态的概念,内环境相对恒定的重要意义。 3、神经调节、体液调节和自身调节的生理意义和功能。 考纲精要 一、生命活动的基本特征 新陈代谢、兴奋性、生殖。 1、新陈代谢:是指机体与环境之间不断进行物质交换和能量交换,以实现自我更新的过程。包括合成代谢和分解代谢。 2、兴奋性:指可兴奋组织或细胞受到特定刺激时产生动作电位的能力或特性。而刺激是指能引起组织细胞发生反应的各种内外环境的变化。 刺激引起组织兴奋的条件:刺激的强度、刺激的持续时间,以及刺激强度对时间的变化率,这三个参数必须达到某个最小值。在其它条件不变情况下,引起组织兴奋所需刺激强度与刺激持续时间呈反变关系。 衡量组织兴奋性大小的较好指标为:阈值。 阈值:刚能引起可兴奋组织、细胞去极化并达到引发动作电位的最小刺激强度。 3、生殖:生物体生长发育到一定阶段,能够产生与自己相似的个体,这种功能称为生殖。生殖功能对种群的繁衍是必需的,因此被视为生命活动的基本特征之一。 二、生命活动与环境的关系 对多细胞机体而言,整体所处的环境称外环境,而构成机体的细胞所处的环境称为内环境。内、外环境与生命活动相互作用、相互影响。当机体受到刺激时,机体内部代谢和外部活动,将会发生相应的改变,这种变化称为反应。反应有兴奋和抑制两种形式。 三、人体功能活动的调节机制 机体内存在三种调节机制:神经调节、体液调节、自身调节。 1、神经调节:是机体功能的主要调节方式。调节特点:反应速度快、作用持续时间短、作用部位准确。基本调节方式:反射。反射活动的结构基础是反射弧,由感受器、传入神经、反射中枢、传出神经和效应器五个部分组成。 反射与反应最根本的区别在于反射活动需中枢神经系统参与。 2、体液调节:发挥调节作用的物质主要是激素。激素由内分泌细胞分泌后可以进入血液循环发挥长距离调节作用,也可以在局部的组织液内扩散,改变附近的组织细胞的功能状态,这称为旁分泌。调节特点:作用缓慢、持续时间长、作用部位广泛。(这些特点都是相对于神经调节而言的。) 神经一体液调节:内分泌细胞直接感受内环境中某种理化因素的变化,直接作出相应的反应。 3、自身调节:是指内外环境变化时组织、细胞不依赖于神经或体液调节而产生的适应性反应。举例:(1)心室肌的收缩力随前负荷变化而变化,从而调节每搏输出量的特点是自身调节,故称为异长自身调节。(2)全身血压在一定范围内变化时,肾血流量维持不变的特点是自身调节。 四、生理功能的反馈调控:正反馈和负反馈 负反馈:反馈信息与控制信息的作用方向相反,因而可以纠正控制信息的效应。 负反馈调节的主要意义在于维持机体内环境的稳态,在负反馈情况时,反馈控制系统平时处于稳定状态。 正反馈:反馈信息不是制约控制部分的活动,而是促进与加强控制部分的活动。 正反馈的意义在于使生理过程不断加强,直至最终完成生理功能,在正反馈情况时,反馈控制系统处于再生状态。 生命活动中常见的正反馈有:排便、排尿、射精、分娩、血液凝固等。 五、内环境与稳态 内环境即细胞外液(包括血浆,组织液,淋巴液,各种腔室液等),是细胞直接生活的液体环境。内环境直接为细胞提供必要的物理和化学条件、营养物质,并接受来自细胞的代谢尾产物。内环境最基本的特点是稳态。 稳态是内环境处于相对稳定(动态平衡)的一种状态,是内环境理化因素、各种物质浓度的相对恒定,这种恒定是在神经、体液等因素的调节下实现。稳态的维持主要依赖负反馈。稳态是内环境的相对稳定状态,而不是绝对稳定。血 液考纲要求 1.细胞内液与细胞外液。 2.血液的组成和理化特性。 3.血细胞及其机能。 4.红细胞的生成与破坏。 5.血液凝固与止血。 6.ABO及Rh血型系统及临床意义。 考纲精要 一、血量与血液的组成 正常人的血液总量约占体重的6%8%,相当于每公斤体重有6080ml。 一次失血不超过全血量10%对生命活动无明显影响,超过20%则有严重影响。 血液成分:液体成分血浆50%60% 有形成分血细胞40%50% 记忆方法: 可以认为全血中血浆与血细胞各占一半左右的容积,血浆稍多于血细胞,记成血浆50%+,血细胞50%-。这点记住了,也就记清了红细胞比容的数字:50%-。(红细胞在全血中的容积百分比称为红细胞比容,近似等于血细胞比容)。至于男性红细胞比容略于女性是由于雄激素有促进红细胞生成的作用。 二、血液的功能 1.运输功能:血液是机体内环境与外环境进行物质交换的必由之路。将营养物质运至全身各部分组织细胞,同时将细胞代谢的尾产物运至排泄器官。 2.缓冲功能:血液中含有丰富的缓冲物质,主要是NaHCO3/H2CO3缓冲对,对血液的酸咸度起缓冲作用。细胞、淋巴细胞、单核细胞等都能参与机体的免疫功能。血浆中的凝血因子、抗凝物质、血小板等在机体凝血、止血和抗凝血过程中有重要作用,是一种防御功能。 三、血浆的理化特征 1.比重:血浆比重1.0251.030,与血浆蛋白浓度成正比。 2.粘滞性:血浆粘滞性为1.62.4,与血浆蛋白含量成正比。 3.血浆渗透压 (1)概念:渗透压指的是溶质分子通过半透膜的一种吸水力量,其大小取决于溶质颗粒数目的多少,而与溶质的分子量、半径等特性无关。由于血浆中晶体溶质数目远远大于胶体数目,所以血浆渗透压主要由晶体渗透压构成。血浆胶体渗透压主要由蛋白质分子构成,其中,血浆白蛋白分子量较小,数目较多(白蛋白球蛋白纤维蛋白原),决定血浆胶体渗透压的大小。 (2)渗透压的作用 晶体渗透压维持细胞内外水平衡 胶体渗透压维持血管内外水平衡 原因:晶体物质不能自由通过细胞膜(见第二章),而可以自由通过有孔的毛细血管,因此,晶体渗透压仅决定细胞膜两侧水份的转移;蛋白质等大分子胶体物质不能通过毛细血管,决定血管内外两侧水的平衡。 (3)注意点:临床上常用的等渗等张溶液有:0.9%NaCl溶液,5%葡萄糖溶液。 血浆蛋白含量变化会影响组织液的量,而不会影响细胞内液的量,细胞外液晶体物质浓度的变化则会影响细胞内液量。 四、红细胞的生理特性 1.红细胞的形态:红细胞呈双凹圆盘形,直径约为8m,无细胞核。 2.红细胞的功能: (1)运输氧和二氧化碳;(2)缓冲体内产生的酸碱物质。这两种功能均由血红蛋白完成,其中的铁离子必须处于亚铁状态(Fe2+)。 3.悬浮稳定性: 以红细胞沉降率(血沉)来表示悬浮稳定性,血沉越决,悬浮稳定性越差,二者呈反变关系。增加血沉的主要原因:红细胞叠连的形成。 影响红细胞叠连的因素不在红细胞本身而在血浆,其中血浆白蛋白通过抑制叠连而使血沉减慢,而球蛋白、纤维蛋白原、胆固醇等促进叠连的形成,从而加速血沉。 4.渗透脆性:是指红细胞在低渗溶液中抵抗膜破裂的一种特性。渗透脆性越大,细胞膜抗破裂的能力越低。 正常红细胞呈双凹圆盘状,在0.45%0.35%NaCl溶液中开始破裂,而球状红细胞渗透脆性增加,在0.64%NaCl溶液中开始破裂。 五、血液凝固 1.概念:血液由流动的溶胶状态(液体状态)变成不流动的凝胶状态的现象称为血液凝固。这一过程所需时间称为凝血时间。 本质:多种凝血因子参与的酶促生化反应(有限水解反应)。 2.基本过程: (1)凝血酶原激活物的形成(Xa、Ca2+、V、PF3)。 (2)凝血酶原变成凝血酶。 (3)纤维蛋白原降解为纤维蛋白。 其中,因子X的激活可通过两咱途径实现:内源性激活途径和外源性激活途径。 3.凝血因子的特点: (1)除因子(Ca2+)和血小板磷脂外,其余凝血因子都是蛋白质。 (2)血液中因子、等通常以无活性酶原存在。 (3)因子以活性形式存在于血液中,但必须因子存在才能起作用。 (4)部分凝血因子在肝脏内合成,且需VitK参与,所以肝脏病变成VitK缺乏常导致凝血异常。 (5)因子为抗血友病因子,缺乏时凝血缓慢。 4.内、外源凝血途径的不同点: 始动因子 参与反应步骤 产生凝血速度 发生条件内源性凝血 胶原纤维等激活因子 较多 较慢 血管损伤或试管内凝血外源性凝血 组织损伤产生因子 较少 较快 组织损伤5.机休组织损伤时的凝血为:内源性和外源性凝血途径共同起作用,且相互促进。 六、抗凝和纤维蛋白溶解 1.血浆中最重要的抗凝物质是:抗凝血酶和肝素。 肝素通过增强抗凝血酶活性而发挥作用。 2.纤维蛋白溶解系统: (+):促进作用 (-):抑制作用 3.正常情况下,血流在血管内不凝固的原因: (1)血流速度快,(2)血管内膜光滑,(3)血浆中存在天然抗凝物质和纤维蛋白溶解系统 七、血小板的生理作用 1.维护血管壁完整性的功能。 2.参与生理止血功能。 (1)血小板粘附、聚集形成松软止血栓,防止出血。 (2)血小板分泌ADP、5-羟色胺、儿茶酚胺等活性物质,ADP使血小板聚集变为不可逆,5-羟色胺等使小动脉收缩,有助于止血。 (3)促进血液凝固,形成牢固止血栓。 八、ABO血型系统 1.血型:血细胞膜外表面特异性抗原类型,通常指红细胞血型。 2.ABO血型的种类: ABO血型系统中有两种抗原,分别称为A抗原和B抗原,均存在于红细胞膜的外表面,在血浆中存在两种相应的抗体即抗A抗体和抗B抗体。根据红细胞上所含抗原种类将人类血型分为如下血型: 血型 A B AB O红细胞上的凝集原(抗原) A B A和B H抗原血清中的凝集素(抗体) 抗B 抗A 无 抗A和抗B3.抗原本质:血型抗原是镶嵌于红细胞膜上的糖蛋白与糖脂。ABO抗原特异性是在H抗原基础上形成的。 4.抗体本质:ABO血型系统的抗体为天然抗体,主要为IgM,不能通过胎盘。 5.输血原则:同型输血。 无同型血时,可按下列原则:(1)O型输给A、B、AB型;AB型可接受A、B、O型血,(2)必须少量(0.84表示肺通气过度或肺血流量减少,这意味着部分肺泡无法进行气体交换,相当于肺泡无效腔增大。 V/Q0.84表示肺通气不足或血流过剩或两者同时存在,这意味着有部分静脉血流过无气体的肺泡后再回流入静脉(动脉血),也就是发生了功能性动静脉短路。 通气/血流比值的记忆方法: 将通气/血流比值看作一个“标准”的分数,写在前面的是分子,写在后面的是分母,故通气/血流比值(V/Q)表示每分钟肺泡通气量与每分钟肺血流量的比值。 五、肺泡表面活性物质 是由肺泡型细胞分泌的一种脂蛋白,主要成分是二棕搁酰卵磷脂,分布于肺泡液体分子层的表面,即在液一气界面之间。 肺泡表面活性物质的生理意义:(1)降低肺泡表面张力;(2)增加肺的顺应性;(3)维持大小肺泡容积的相对稳定;(4)防止肺不张;(5)防止肺水肿。 肺泡表面活性物质缺乏将出现:肺泡的表面张力增加,大肺泡破裂小肺泡萎缩,初生儿呼吸窘迫综合征等病变。 六、肺容量与肺通气量 1.潮气量:平静呼吸时,每次吸入或呼出的气量。 2.余气量:在尽量呼气后,肺内仍保留的气量。 3.功能余量=余气量+补呼气量。 4.肺总容量=潮气量+补吸气量+补呼气量+余气量。 5.肺活量:最大吸气后,从肺内所能呼出的最大气量。 6.时间肺活量:是评价肺通气功能的较好指标,正常人头3秒分别为83%、96%、99%的肺活量。时间肺活量比肺活量更能反映肺通气状况,时间肺活量反映的为肺通气的动态功能,测定时要求以最快的速度呼出气体。 7.每分肺通气量=潮气量呼吸频率。 8.每分钟肺泡通气量=(潮气量-无效腔气量)呼吸频率。 潮气量和呼吸频率的变化,对肺通气和肺泡通气有不同的影响。如潮气量减少1/2,呼吸频率增加1倍,此时肺通气不变,而解剖无效腔占的比例比正常潮气量时大,所以肺泡通气量减少。从气体交换的效果看,深慢呼吸比浅快呼吸有利于气体交换。 评价肺通气功能的常用指标有肺活量、时间肺活量、肺泡通气旱等,从气体交换的意义来说,最好的指标是肺泡通气量。因为肺通气的生理意义在于摄入氧气和排出体内的二氧化碳,进入肺内的气体中只有肺泡气能与机体进行气体交换,因此肺通气效果的好坏主要取决于肺泡通气量的大小以及肺泡通气量是否与肺血流相适应,其它评价肺通气的指标都不能直接反映肺通气的效果。 七、呼吸中枢及呼吸节律的形式 1.是指中枢神经系统内产生和调节呼吸运动的神经细胞群,分布在大脑皮层、间脑、脑桥、延髓、脊髓等部位。 呼吸运动的基本调节中枢在脑桥和延髓呼吸中枢。 基本呼吸节律产生于延髓,延髓是自主呼吸的最基本中枢。 2.呼吸中枢的结构和功能特性: 呼吸节律的发生依赖脑干两侧多个不同部位的多组神经元活动的组合,这些部位包括延髓呼吸中枢和呼吸调整中枢等。 (1)延髓呼吸中枢包括背侧呼吸组和腹侧呼吸组。背侧呼吸组实际上是孤束核的腹外侧核,大多数为吸气相关神经元,轴突交叉至对侧终止至脊髓颈、胸段的膈神经和肋间神经的运动神经元。腹侧呼吸组包括疑核、后疑核、包氏复合体等神经核团,其中既含有吸气相关神经元又含有呼气相关神经元。 (2)呼吸调整中枢包括脑桥前端的2对神经核团,即臂旁内侧核和相邻的Kolliker-Fuse复合体。其作用可能是传递冲动给吸气切断机制,使吸气及时终止,向呼气转化。此作用与刺激迷走神经引起的吸气向呼气转化相似,如果同时切除呼吸调整中枢、迷走神经传入纤维,动物将出现长吸气呼吸。 3.呼吸节律形成的假说吸气切断机制: 引起吸气向呼气转化的信息来自三个方面:吸气神经元;呼吸调整中枢的纤维投射;肺牵张感受器兴奋经传入神经将信息传至吸气切断机制。 八、呼吸的反射性调节 1.肺牵张反射(黑伯反射):感受器位于气管和支气管平滑肌内,是牵张感受器,传入纤维是通过迷走神经粗纤维进入延髓。 肺牵张反射包括肺扩张时抑制吸气的肺扩张反射和肺缩小时引起吸气的肺缩小反射。平静呼吸时,这两种反射都不参与人的呼吸调节,仅在病理情况下发挥作用。 2.肺毛细血管旁(J)感受器引起的呼吸反射: J感受器是位于肺胞壁毛细血管的组织间隙内,它接受组织间隙膨胀作用的刺激,反射地引起呼吸变浅变快。 九、化学因素对呼吸的调节 1.调节呼吸的化学因素:动脉血或脑脊液中的O2、CO2、H+。 2.中枢化学感受器与外周化学感受器的异同点: 位置 感受细胞 感受刺激中枢感受器 延髓腹外侧浅表部位 神经细胞 H+(pH)p(CO2)外周感受器 颈动脉体和主动脉体 型细胞 pH、p(CO2)、p(O2)3.CO2对呼吸的调节:CO2对呼吸有很强的刺激作用,一定水平的p(CO2)对维持呼吸中枢的兴奋性是必要的。CO2通过刺激中枢和外周化学感受器,使呼吸加深加快,其中刺激中枢化学感受器是主要途径。 CO2是调节呼吸的最重要的生理性体液因子,因为:血中CO2变化既可直接作用于外周感受器,又可以增高脊液中H+浓度作用于中枢感受器;而血中H+主要作用于外周感受器,H+通过血脑屏障进入脑脊液比较缓慢;O2含量变化不能刺激中枢化学感受器,同时低O2对中枢则是抑制作用。 4.H+对呼吸的调节:血液中H+升高通过刺激中枢和外周化学感受器,使呼吸加强。H+主要作用于外周感受器,H+通过血脑屏障进入脑脊液比较缓慢,而中枢感受器的有效刺激是脑脊液中的H+。 5.低O2对呼吸的调节:O2含量变化不能刺激中枢化学感受器,p(O2)降低兴奋外周化学感受器,对中枢则是抑制作用。 6.中枢化学感受器的直接生理刺激是H+变化而不是O2、CO2的变化。 记忆方法: (1)调节呼吸的体液因子有O2、CO2、H+,其中O2、CO2是脂溶性小分子物质,可以自由地通过细胞膜,在细胞内外达到同一浓度,因此“正常”细胞不能感受O2、CO2的变化。中枢化感的细胞是神经细胞,属于“正常”细胞,故不能感受浓O2、CO2度的变化,而外周化感的感受细胞是型细胞,是“特殊”功能的细胞,故能受到O2、CO2浓度变化的刺激。 (2)H+不能自由通过细胞膜,故细胞外液中的H+浓度增加,对中枢化感的“正常”细胞和外周化感的“特殊”细胞都是有效的刺激。 (3)p(CO2)时,在碳酸酐酶的作用下使H+增多,故p(CO2)能间接兴奋中枢化学感受器。 (4)由于中枢化感是“正常”感受细胞,而外周化感为“特殊”细胞,故H+增多,pCO2增高,主要通过中枢化感调节呼吸运动。 (5)由于外周化感为“特殊”感受细胞,因此它的适应性较中枢慢,当持续p(CO2)增高对中枢化感的刺激作用出现适应现象时,不能吸入纯氧,因为需要一定的低p(O2)对外周化感的刺激作用,以兴奋呼吸。 十、气体在血液中的运输 1.氧气的运输:包括物理溶解和化学结合。 (1)物理溶解量取决于该气体的溶解度和分压大小。 (2)化学结合的形式是氧合血红蛋白,这是氧运输的主要形式,占98.5%,正常人每100ml动脉血中Hb结合的O2约为19.5ml。 (3)Hb是运输O2的主要工具,Hb与O2结合特点如下: 可逆性结合;Hb中的Fe2+仍然是亚铁状态;是氧合而不是氧化;结合与解离都不需酶催化,取决于血中p(O2)的高低;结合或解离曲线S型,与Hb的变构效应有关。 2.二氧化碳的运输: (1)运输形式:物理溶解占5%,化学结合:HCO3-占88%,氨基甲酸血红蛋白占7%;(2)O2与Hb结合将促使CO2释放,这一效应称何尔登效应。 3.氧解离曲线的特点:呈S型 (1)上段较平坦,氧分压在70m/100mmHg范围变化时,Hb氧饱和度变化不大。 (2)中段较陡,是HbO2释放O2部分。 (3)下段最陡,HbO2稍降,就可大大下降,这有利于运动时组织的供氧。下段代表O2贮备。 4.影响氧解离曲线的因素: H+、pCO2、温度升高2、3-二磷酸甘油酸(2、3-DPG)均使氧解离曲线右移,释放O2增多供组织利用。Hb与O2的结合还为其自身性质所影响。 酸度增加降低Hb与氧亲和力的效应称为波尔效应。消化和吸收考纲要求 1.概述:消化管平滑肌的特性,消化腺分泌的机制。胃肠道的神经支配和胃肠道激素。 2.口腔内消化:唾液的成分与作用,唾液分泌的调节和吞咽功能。 3.胃内消化:胃液的性质、成分及作用。胃液分泌的调节。胃的容受性舒张和蠕动。胃排空及其调节。 4.小肠内消化:胰液、胆汁和小肠液的成分和作用,以及它们分泌和排出的调节。小肠运动的形式及调节,回盲括约肌的功能。 5.大肠内消化:大肠液的分泌,大肠的运动和排便。 6.各种物质吸收的部位和机理。 考纲精要 一、消化和吸收的基本概念 消化:食物在消化道内被分解成可吸收的小分子物质的过程。 吸收:食物消化后的小分子物质通过消化道粘膜进入血液和淋巴液的过程。 消化的方式:机械消化和化学消化。 机械消化依赖消化道平滑肌的运动,化学消化依赖消化液中所含消化酶的作用。 消化液由各种消化腺分泌,主要成分是水、无机盐和有机物。 无机盐调节消化道的酸碱环境和渗透压、以便一些重要物质的消化和吸收。有机物中最重要的是消化酶。其次是粘液,粘液由空腔脏器分泌(所以胆汁和胰液中不含粘液),对消化道粘膜具有保护作用。 二、消化道平滑肌的特性 1.消化道平滑肌的一般特性:兴奋性较骨骼肌低、不规则的节律性、紧张性、伸展性、对刺激的特异敏感性即对牵张、温度和化学刺激敏感而对切割、电刺激等不敏感。 2.消化平滑肌的电生理特性: (1)静息电位主要由K+外流的平衡电位形成,但Na+、Cl-、Ca2+等离子在安静时也有少量通透性,加之生电钠泵也发挥作用,故静息电位值较低且不稳定。 (2)慢波电位又称基本电节律,是消化道平滑肌特有的电变化,是细胞自发性节律性去极化形成的。慢波起源于纵行肌,它是局部电位,不能直接引起平滑肌收缩,但动作电位只能在慢波的基础上产生,因此慢波是平滑肌的起步电位,控制平滑肌收缩的节律。 消化道平滑肌慢波有如下特点:慢波是静息电位基础上产生的缓慢的节律性去极化波;胃肠道不同部位慢波的频率不同;它的产生与细胞膜生电钠泵的周期活动有关;不能引起平滑肌收缩;慢波的波幅通常在1015mV之间。 (3)动作电位是慢波去极化到阈电位水平时产生的,动作电位引起平滑肌收缩。参与平滑肌动作电位形成的离子主要是Ca2+和K+。 慢波、动作电位和肌肉收缩的关系简要归纳为:平滑肌的收缩是继动作电位之后产生的,而动作电位是在慢波去极化的基础上发生的。 三、胃肠激素 1.概念:在胃肠道的粘膜内存在有数十种内分泌细胞,它们分泌的激素统称为胃肠激素。胃肠激素的化学成分为多肽,可作为循环激素起作用,也可作为旁分泌物在局部起作用或者分泌入肠腔发挥作用。由于胃肠道粘膜面积大,所含内分泌细胞数量大,故胃肠道是体内最大的内分泌器官。 区分哪些激素是胃肠激素比较容易,因为胃肠激素都是
展开阅读全文
相关资源
相关搜索

最新文档


当前位置:首页 > 压缩资料 > 基础医学


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!