新编高考数学文科一轮总复习 第三篇导数及其应用

上传人:沈*** 文档编号:64486488 上传时间:2022-03-21 格式:DOC 页数:53 大小:1.02MB
返回 下载 相关 举报
新编高考数学文科一轮总复习 第三篇导数及其应用_第1页
第1页 / 共53页
新编高考数学文科一轮总复习 第三篇导数及其应用_第2页
第2页 / 共53页
新编高考数学文科一轮总复习 第三篇导数及其应用_第3页
第3页 / 共53页
点击查看更多>>
资源描述
新编高考数学复习资料第1讲导数的概念及运算知 识 梳 理1函数yf(x)在xx0处的导数(1)定义:设函数yf(x)在区间(a,b)上有定义,x0(a,b),当x无限趋近于0时,比值无限趋近于一个常数A,则称f(x)在xx0处可导,并称常数A为函数f(x)在点xx0处的导数,记作f(x0)可表示为“当x0时,A”(2)几何意义:函数f(x)在点x0处的导数f(x0)的几何意义是过曲线yf(x)上点(x0,f(x0)的切线的斜率2函数f(x)的导函数若f(x)对于区间(a,b)内任一点都可导,则f(x)在各点的导数也随着自变量x的变化而变化,因而也是自变量x的函数该函数称为f(x)的导函数,记作f(x)3基本初等函数的导数公式基本初等函数导函数f(x)C(C为常数)f(x)0f(x)xn(nQ*)f(x)nxn1f(x)sin xf(x)cos_xf(x)cos xf(x)sin_xf(x)exf(x)exf(x)ax(a0,a1)f(x)axln_af(x)ln xf(x)f(x)logax(a0,a1)f(x)4.导数的运算法则若f(x),g(x)存在,则有(1)f(x)g(x)f(x)g(x);(2)f(x)g(x)f(x)g(x)f(x)g(x);(3)(g(x)0)辨 析 感 悟1对导数概念的理解(1)f(x0)是函数yf(x)在xx0附近的平均变化率()(2)f(x0)与f(x0)表示的意义相同()2对导数的几何和物理意义的理解(3)曲线的切线不一定与曲线只有一个公共点()(4)物体的运动方程是s4t216t,在某一时刻的速度为0,则相应时刻t0.()(5)曲线yf(x)在点P(x0,y0)处的切线与过点P(x0,y0)的切线相同()3导数运算问题(6)若f(x)a32axx2,则f(x)3a22a2x.()(7)函数f(x)x2ln x的导函数为f(x)2x2.()(8)函数y的导数是y.()感悟提升1一个区别曲线yf(x)“在点P(x0,y0)处的切线”与“过点P(x0,y0)的切线”的区别:曲线yf(x)在点P(x0,y0)处的切线是指P为切点,切线唯一,若斜率存在时,切线的斜率kf(x0);曲线yf(x)过点P(x0,y0)的切线,是指切线经过P点,点P可以是切点,也可以不是切点,而且这样的直线可能有多条2三个防范一是并不是所有的函数在其定义域上的每一点处都有导数,如函数y|x|在x0处就没有导数二是曲线的切线与曲线的交点个数不一定只有一个,这和研究直线与二次曲线相切时有差别,如(3)三是对函数求导要看准自变量,是对自变量的求导,而不是对其它参数的求导,如(6)考点一导数的运算【例1】 (1)求下列函数的导数:yx2sin x;y.(2)(2014济宁模拟)已知f(x)x(2 012ln x),f(x0)2 013,则x0_.(1)解y(x2)sin xx2(sin x)2xsin xx2cos x.y.(2)解析f(x)2 012ln xx2 013ln x,由f(x0)2 013,得ln x00,解得x01.答案1规律方法 (1)进行导数运算时,要牢记导数公式和导数的四则运算法则,切忌记错记混(2)求导前应利用代数、三角恒等变形将函数先化简,然后求导,这样可以减少运算量,提高运算速度,减少差错【训练1】 (1)已知f(x),则f(1)_.(2)已知函数f(x)fcos xsin x,则f的值为_解析(1)f(x),则f(1).(2)f(x)fsin xcos x,所以ff,解得f1,故ffcos sin 1.答案(1)(2)1考点二利用导数的几何意义求曲线的切线 方程【例2】 已知函数f(x)x34x25x4.(1)求曲线f(x)在点(2,f(2)处的切线方程;(2)求经过点A(2,2)的曲线f(x)的切线方程审题路线(1)求f(x)求f(2)求f(2)由点斜式写出切线方程(2)设切点P(x0,y0)求f(x0)由点斜式写出过点A的切线方程把点P代入切线方程求x0再代入求得切线方程解(1)f(x)3x28x5,f(2)1,又f(2)2,曲线在点(2,f(2)处的切线方程为y2x2,即xy40.(2)设曲线与经过点A(2,2)的切线相切于点P(x0,x4x5x04),f(x0)3x8x05,切线方程为y(2)(3x8x05)(x2),又切线过点P(x0,x4x5x04),x4x5x02(3x8x05)(x02),整理得(x02)2(x01)0,解得x02或1,经过A(2,2)的曲线f(x)的切线方程为xy40,或y20.规律方法 利用导数的几何意义求曲线的切线方程时,注意区分是曲线在某点处的切线,还是过某点的切线曲线yf(x)在点P(x0,f(x0)处的切线方程是yf(x0)f(x0)(xx0)求过某点的切线方程时需设出切点坐标,进而求出切线方程【训练2】 (1)(2014扬州期末)设a为实数,函数f(x)x3ax2(a3)x的导函数为f(x),且f(x)是偶函数,则曲线yf(x)在原点处的切线方程为_ (2)曲线yx(3ln x1)在点(1,1)处的切线方程为_解析(1)f(x)3x22ax(a3),又f(x)为偶函数,则a0,所以f(x)x33x,f(x)3x23,故f(0)3,故所求的切线方程为y3x.(2)函数的导数为f(x)3ln x1x3ln x4,所以在(1,1)的切线斜率为k4,所以切线方程为y14(x1),即y4x3.答案(1)y3x(2)y4x3考点三利用曲线的切线方程求参数【例3】 (2013新课标全国卷改编)设函数f(x)ex(axb)x24x,曲线yf(x)在点(0,f(0)处的切线方程为y4x4.求a,b的值解f(x)aexex(axb)2x4ex(axab)2x4,f(0)ab44,又f(0)b4,a4.规律方法 已知曲线在某点处的切线方程求参数,是利用导数的几何意义求曲线的切线方程的逆用,解题的关键是这个点不仅在曲线上也在切线上.【训练3】 (2013福建卷改编)设函数f(x)x1(aR,e为自然对数的底数)曲线yf(x)在点(1,f(1)处的切线平行于x轴,求a的值解由f(x)x1,得f(x)1.又曲线yf(x)在点(1,f(1)处的切线平行于x轴,得f(1)0,即10,解得ae.1在对导数的概念进行理解时,特别要注意f(x0)与(f(x0)是不一样的,f(x0)代表函数f(x)在xx0处的导数值,不一定为0;而(f(x0)是函数值f(x0)的导数,而函数值f(x0)是一个常量,其导数一定为0,即(f(x0)0.2对于函数求导,一般要遵循先化简再求导的基本原则求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误易错辨析3求曲线切线方程考虑不周【典例】 (2014杭州质检)若存在过点O(0,0)的直线l与曲线f(x)x33x22x和yx2a都相切,则a的值是_ 错解 点O(0,0)在曲线f(x)x33x22x上,直线l与曲线yf(x)相切于点O.则kf(0)2,直线l的方程为y2x.又直线l与曲线yx2a相切,x2a2x0满足44a0,a1.答案1错因 (1)片面理解“过点O(0,0)的直线与曲线f(x)x33x22x相切”这里有两种可能:一是点O是切点;二是点O不是切点,但曲线经过点O,解析中忽视后面情况(2)本题还易出现以下错误:一是O(0,0)不是切点,无法与导数的几何意义沟通起来;二是盲目设直线l的方程,导致解题复杂化,求解受阻正解 易知点O(0,0)在曲线f(x)x33x22x上,(1)当O(0,0)是切点时,同上面解法(2)当O(0,0)不是切点时,设切点为P(x0,y0),则y0x3x2x0,且kf(x0)3x6x02.又kx3x02,由,联立,得x0(x00舍),所以k,所求切线l的方程为yx.由得x2xa0.依题意,4a0,a.综上,a1或a.答案1或防范措施 (1)求曲线的切线方程应首先确定已知点是否为切点是求解的关键,分清过点P处的切线与在点P处的切线的差异(2)熟练掌握基本初等函数的导数,导数的运算法则,正确进行求导运算【自主体验】若存在过点(1,0)的直线与曲线yx3和yax2x9都相切,则a等于_解析设过(1,0)的直线与yx3相切于点(x0,x),所以切线方程为yx3x(xx0),即y3xx2x,又(1,0)在切线上,则x00或.当x00时,由y0与yax2x9相切可得a;当x0时,由yx与yax2x9相切可得a1.答案1或基础巩固题组(建议用时:40分钟)一、填空题1(2014深圳中学模拟)曲线yx3在原点处的切线方程为_解析y3x2,ky|x00,曲线yx3在原点处的切线方程为y0.答案y02已知f(x)xln x,若f(x0)2,则x0_.解析f(x)的定义域为(0,),f(x)ln x1,由f(x0)2,即ln x012,解得x0e.答案e3(2014辽宁五校联考)曲线y3ln xx2在点P0处的切线方程为4xy10,则点P0的坐标是_解析由题意知y14,解得x1,此时41y10,解得y3,点P0的坐标是(1,3)答案(1,3)4(2014烟台期末)设函数f(x)xsin xcos x的图象在点(t,f(t)处切线的斜率为k,则函数kg(t)的部分图象为_解析函数f(x)的导函数为f(x)(xsin xcos x)xcos x,即kg(t)tcos t,则函数g(t)为奇函数,图象关于原点对称,排除,.当0t时,g(t)0,所以排除,选.答案5曲线y在点M处的切线的斜率为_解析y,故所求切线斜率k.答案6(2013广东卷)若曲线yax2ln x在点(1,a)处的切线平行于x轴,则a_.解析y2ax,y|x12a10,a.答案7已知f(x)x23xf(2),则f(2)_.解析由题意得f(x)2x3f(2),f(2)223f(2),f(2)2.答案28(2013江西卷)若曲线yx1(R)在点(1,2)处的切线经过坐标原点,则_.解析yx1,斜率ky|x12,2.答案2二、解答题9求下列函数的导数:(1)yexln x;(2)yx;(3)yxsin cos ;(4)y(1) .解(1)y(exln x)exln xexex.(2)yx31,y3x2.(3)先使用三角公式进行化简,得yxsin cos xsin x,yx(sin x)1cos x.(4)先化简,y1y.10(2014南通二模)f(x)ax,g(x)ln x,x0,aR是常数(1)求曲线yg(x)在点P(1,g(1)处的切线l.(2)是否存在常数a,使l也是曲线yf(x)的一条切线若存在,求a的值;若不存在,简要说明理由解(1)由题意知,g(1)0,又g(x),g(1)1,所以直线l的方程为yx1.(2)设yf(x)在xx0处的切线为l,则有解得此时f(2)1,即当a时,l是曲线yf(x)在点Q(2,1)的切线能力提升题组(建议用时:25分钟)一、填空题1(2014盐城一模)设P为曲线C:yx22x3上的点,且曲线C在点P处切线倾斜角的取值范围是,则点P横坐标的取值范围是_解析设P(x0,y0),倾斜角为,y2x2,则ktan 2x020,1,解得x0.答案2设f0(x)sin x,f1(x)f0(x),f2(x)f1(x),fn(x)fn1(x),nN*,则f2 013(x)_.解析f1(x)f0(x)cos x,f2(x)f1(x)sin x,f3(x)f2(x)cos x,f4(x)f3(x)sin x,由规律知,这一系列函数式值的周期为4,故f2 013(x)f1(x)cos x.答案cos x3(2014武汉中学月考)已知曲线f(x)xn1(nN*)与直线x1交于点P,设曲线yf(x)在点P处的切线与x轴交点的横坐标为xn,则log2 013x1log2 013x2log2 013x2 012的值为_解析f(x)(n1)xn,kf(1)n1,点P(1,1)处的切线方程为y1(n1)(x1),令y0,得x1,即xn,x1x2x2 012,则log2 013x1log2 013x2log2 013x2 012log2 013(x1x2x2 012)1.答案1二、解答题4设函数f(x)ax,曲线yf(x)在点(2,f(2)处的切线方程为7x4y120.(1)求f(x)的解析式;(2)证明:曲线yf(x)上任一点处的切线与直线x0和直线yx所围成的三角形面积为定值,并求此定值(1)解方程7x4y120可化为yx3,当x2时,y.又f(x)a,于是解得故f(x)x.(2)证明设P(x0,y0)为曲线上任一点,由f(x)1知曲线在点P(x0,y0)处的切线方程为yy0(xx0),即y(x0)(xx0)令x0,得y,从而得切线与直线x0交点坐标为.令yx,得yx2x0,从而得切线与直线yx的交点坐标为(2x0,2x0)所以点P(x0,y0)处的切线与直线x0,yx所围成的三角形面积为|2x0|6.故曲线yf(x)上任一点处的切线与直线x0和直线yx所围成的三角形面积为定值,此定值为6.第2讲导数的应用(一)知 识 梳 理1函数的单调性与导数的关系已知函数f(x)在某个区间(a,b)内可导,(1)如果f(x)0,那么函数yf(x)在这个区间内单凋递增;(2)如果f(x)0,那么函数yf(x)在这个区间内单调递减2函数的极值(1)判断f(x0)是极值的方法一般地,当函数f(x)在点x0处连续时,如果在x0附近的左侧f(x)0,右侧f(x)0,那么f(x0)是极大值;如果在x0附近的左侧f(x)0,右侧f(x)0,那么f(x0)是极小值(2)求可导函数极值的步骤求f(x);求方程f(x)0的根;检查f(x)在方程f(x)0的根左右值的符号如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值,如果左右两侧符号一样,那么这个根不是极值点3函数的最值与导数设函数f(x)在a,b上连续且在(a,b)内可导,求f(x)在a,b上的最大值和最小值的步骤如下:求f(x)在(a,b)内的极值;将f(x)的各极值与f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值辨 析 感 悟1对函数的单调性与导数关系的理解(1)若函数f(x)在(a,b)内恒有f(x)0,那么f(x)在(a,b)上单调递增;反之若函数f(x)在(a,b)内单调递增,那么一定有f(x)0.()(2)函数在其定义域内的离散的点处导数为0不影响函数的单调性()(3)(2012辽宁卷改编)函数yx2ln x的单调减区间为(1,1)()2对函数极值、最值概念的理解(4)导数为0的点一定是极值点()(5)函数f(x)x有极值()(6)(教材习题改编)函数f(x)x34x4在(0,3)上的最大值为4,最小值为.()感悟提升1一点提醒函数最值是“整体”概念,而函数极值是个“局部”概念,极大值与极小值没有必然的大小关系2两个条件一是f(x)0在(a,b)上成立,是f(x)在(a,b)上单调递增的充分不必要条件,如(1)二是对于可导函数f(x),f(x0)0是函数f(x)在xx0处有极值的必要不充分条件,如(4)3三点注意一是求单调区间时应遵循定义域优先的原则二是函数的极值一定不会在定义域区间的端点处取到三是求最值时,应注意极值点和所给区间的关系,关系不确定时分类讨论,不可想当然认为极值就是最值.考点一利用导数研究函数的单调性【例1】 (2012山东卷节选)已知函数f(x)(k为常数,e2.718 28是自然对数的底数),曲线yf(x)在点(1,f(1)处的切线与x轴平行(1)求k的值;(2)求f(x)的单调区间解(1)由f(x),得f(x),x(0,),由于曲线yf(x)在点(1,f(1)处的切线与x轴平行所以f(1)0,因此k1.(2)由(1)知,f(x),x(0,)设h(x)ln x1,则h(x)0,即h(x)在(0,)上是减函数,由h(1)0知,当0x0,从而f(x)0,当x1时,h(x)0,从而f(x)0),f(x).令f(x)0,解得x1或(舍去)当x(0,1)时,f(x)0.f(x)在(0,1)上是减函数,在(1,)上是增函数故f(x)在x1处取得极小值f(1)3,f(x)无极大值规律方法 (1)可导函数yf(x)在点x0处取得极值的充要条件是f(x0)0,且在x0左侧与右侧f(x)的符号不同(2)若f(x)在(a,b)内有极值,那么f(x)在(a,b)内绝不是单调函数,即在某区间上单调递增或递减的函数没有极值【训练2】 已知a,b是实数,1和1是函数f(x)x3ax2bx的两个极值点(1)求a和b的值;(2)设函数g(x)的导函数g(x)f(x)2,求g(x)的极值点解(1)f(x)3x22axb.又1和1是函数f(x)的两个极值点,解之得,a0,b3.(2)由(1)知,f(x)x33x,g(x)x33x2.由g(x)0,得(x1)2(x2)0,g(x)0的根为x2或1.当x2时,g(x)0;当2x0.x2是函数g(x)的极小值点当2x1时,g(x)0,故1不是g(x)的极值点所以g(x)的极小值点为2,无极大值点考点三利用导数求函数的最值【例3】 (2012重庆卷)已知函数f(x)ax3bxc在点x2处取得极值c16.(1)求a,b的值;(2)若f(x)有极大值28,求f(x)在3,3上的最小值审题路线(1)a,b的值;(2)求导确定函数的极大值求得c值求得极大值、极小值、端点值求得最值解(1)因f(x)ax3bxc,故f(x)3ax2b,由于f(x)在点x2处取得极值c16,故有即化简得解得a1,b12.(2)由(1)知f(x)x312xc,f(x)3x2123(x2)(x2)令f(x)0,得x2或2.当x变化时,f(x),f(x)的变化情况如下表:x3(3,2)2(2,2)2(2,3)3f(x)00f(x)9c极大值极小值9c由表知f(x)在x2处取得极大值,f(2)16c;在x2处取得极小值f(2)c16.则16c28,得c12,故f(x)在3,3上的最小值为f(2)4.规律方法 在解决类似的问题时,首先要注意区分函数最值与极值的区别求解函数的最值时,要先求函数yf(x)在a,b内所有使f(x)0的点,再计算函数yf(x)在区间内所有使f(x)0的点和区间端点处的函数值,最后比较即得.【训练3】 设函数f(x)xax2bln x,曲线yf(x)过P(1,0),且在P点处的切线斜率为2.(1)求a,b的值;(2)令g(x)f(x)2x2,求g(x)在定义域上的最值解(1)f(x)12ax(x0),又f(x)过点P(1,0),且在点P处的切线斜率为2,即解得a1,b3.(2)由(1)知,f(x)xx23ln x,其定义域为(0,),g(x)2xx23ln x,x0,则g(x)12x.当0x0;当x1时,g(x)0.所以g(x)在(0,1)内单调递增,在(1,)内单调递减g(x)的最大值为g(1)0,g(x)没有最小值1求极值、最值时,要求步骤规范、表格齐全,区分极值点与导数为0的点;含参数时,要讨论参数的大小2求函数最值时,不可想当然地认为极值点就是最值点,要通过认真比较才能下结论一个函数在其定义域内最值是唯一的,可以在区间的端点取得思想方法3分类讨论思想在导数中的应用【典例】 (2013浙江卷)已知aR,函数f(x)2x33(a1)x26ax.(1)若a1,求曲线yf(x)在点(2,f(2)处的切线方程;(2)若|a|1,求f(x)在闭区间0,2|a|上的最小值解(1)当a1时,f(x)6x212x6,所以f(2)6.又因为f(2)4,所以切线方程为6xy80.(2)记g(a)为f(x)在闭区间0,2|a|上的最小值由题意知f(x)6x26(a1)x6a6(x1)(xa)令f(x)0,得到x1或a.当a1时,x0(0,1)1(1,a)a(a,2a)2af(x)00f(x)0极大值3a1极小值a2(3a)4a3比较f(0)0和f(a)a2(3a)的大小可得g(a)当a1时,x0(0,1)1(1,2a)2af(x)0f(x)0极小值3a128a324a2得g(a)3a1.综上所述,f(x)在闭区间0,2|a|上的最小值为g(a)反思感悟 (1)含参数的函数的单调性问题一般要分类讨论,常见的分类讨论标准有以下几种可能:方程f(x)0是否有根;若f(x)0有根,求出根后是否在定义域内;若根在定义域内且有两个,比较根的大小是常见的分类方法(2)本题的难点是分类讨论,除了比较两个根1与a的大小外,还须比较f(0)与f(a)的大小【自主体验】(2013临沂一模)设f(x)ex(ax2x1)(a0),试讨论f(x)的单调性解f(x)ex(ax2x1)ex(2ax1)exax2(2a1)x2ex(ax1)(x2)aex(x2)当a时,f(x)ex(x2)20恒成立,函数f(x)在R上单调递增;当0a时,有2,令f(x)aex(x2)0,有x2或x,令f(x)aex(x2)0,有x2,函数f(x)在和(2,)上单调递增,在上单调递减;当a时,有2,令f(x)aex(x2)0,有x或x2,令f(x)aex(x2)0,有2x,函数f(x)在(,2)和上单调递增;在上单调递减.基础巩固题组(建议用时:40分钟)一、填空题1函数f(x)(x3)ex的单调递增区间是_解析f(x)ex(x2),令f(x)0得x2.f(x)的单调增区间是(2,)答案(2,)2.(2013浙江卷改编)已知函数yf(x)的图象是下列四个图象之一,且其导函数yf(x)的图象如右图所示,则该函数的图象是_解析由yf(x)的图象知,yf(x)的图象为增函数,且在区间(1,0)上增长速度越来越快,而在区间(0,1)上增长速度越来越慢答案3(2014苏州模拟)函数yxex的最小值是_解析yexxex(1x)ex,令y0,则x1,因为x1时,y0,x1时,y0,所以x1时,ymin.答案4(2013威海期末考试)函数yln xx2的极值点为_解析函数的定义域为(0,),函数的导数为y2x,令y0,解得x,当x时,y0,当0x时,y0,所以当x时,函数取得极大值,故函数的极值点为.答案5设aR,若函数yexax,xR有大于零的极值点,则_a1;a1;a;a.解析yexax,yexa.函数yexax有大于零的极值点,则方程yexa0有大于零的解,x0时,ex1,aex1.答案6已知函数f(x)x24x3ln x在t,t1上不单调,则t的取值范围是_解析由题意知f(x)x4,由f(x)0得函数f(x)的两个极值点为1和3,则只要这两个极值点有一个在区间(t,t1)内,函数f(x)在区间t,t1上就不单调,由t1t1或t3t1,得0t1或2t3.答案(0,1)(2,3)7(2014淄博模拟)已知f(x)x33ax2bxa2,在x1时有极值0,则ab_.解析由题意得f(x)3x26axb,则解得或经检验当a1,b3时,函数f(x)在x1处无法取得极值,而a2,b9满足题意,故ab7.答案78(2013福建卷改编)设函数f(x)的定义域为R,x0(x00)是f(x)的极大值点,以下结论一定正确的是_xR,f(x)f(x0);x0是f(x)的极小值点;x0是f(x)的极小值点;x0是f(x)的极小值点解析错,因为极大值未必是最大值;错,因为函数yf(x)与函数yf(x)的图象关于y轴对称,x0应是f(x)的极大值点;错,函数yf(x)与函数yf(x)的图象关于x轴对称,x0应为f(x)的极小值点;正确,函数yf(x)与yf(x)的图象关于原点对称,x0应为yf(x)的极小值点答案二、解答题9(2014绍兴模拟)已知函数f(x)x3ax2bxc,曲线yf(x)在点x1处的切线为l:3xy10,若x时,yf(x)有极值(1)求a,b,c的值;(2)求yf(x)在3,1上的最大值和最小值解 (1)由f(x)x3ax2bxc,得f(x)3x22axb.当x1时,切线l的斜率为3,可得2ab0.当x时,yf(x)有极值,则f0,可得4a3b40.由,解得a2,b4.由于切点的横坐标为x1,所以f(1)4.所以1abc4,所以c5.(2)由(1),可得f(x)x32x24x5,所以f(x)3x24x4.令f(x)0,解得x2或.当x变化时,f(x),f(x)的变化情况如下表所示:x3(3,2)21f(x)00f(x)8134所以yf(x)在3,1上的最大值为13,最小值为.10(2013济南模拟)已知函数f(x)(ax2x1)ex,其中e是自然对数的底数,aR.(1)若a1,求曲线f(x)在点(1,f(1)处的切线方程;(2)若a0,求f(x)的单调区间解(1)当a1时,f(x)(x2x1)ex,所以f(x)(2x1)ex(x2x1)ex(x23x)ex,所以曲线f(x)在点(1,f(1)处的切线斜率为kf(1)4e,又因为f(1)e,所以所求切线方程为ye4e(x1),即4exy3e0.(2)f(x)(2ax1)ex(ax2x1)exax2(2a1)xex,若a0,当x0或x时,f(x)0;当0x时,f(x)0.所以f(x)的单调递减区间为(,0,;单调递增区间为.若a,f(x)x2ex0,所以f(x)的单调递减区间为(,)若a,当x或x0时,f(x)0;当x0时,f(x)0.所以f(x)的单调递减区间为,0,);单调递增区间为.能力提升题组(建议用时:25分钟)一、填空题1函数f(x)x22axa在区间(,1)上有最小值,则函数g(x)在区间(1,)上一定_有最小值;有最大值;是减函数;是增函数解析由函数f(x)x22axa在区间(,1)上有最小值,可得a0,所以g(x)在(1,)上为增函数答案2(2013金陵中学模拟)若a0,b0,且函数f(x)4x3ax22bx2在x1处有极值,则ab的最大值等于_解析f(x)12x22ax2b,4a296b0,又x1是极值点,f(1)122a2b0,即ab6,ab9,当且仅当ab时“”成立,所以ab的最大值为9.答案93(2014宁波调研)设函数f(x)ln xax2bx,若x1是f(x)的极大值点,则a的取值范围是_解析f(x)的定义域为(0,),f(x)axb,由f(1)0,得b1a.f(x)axa1.若a0,当0x0,此时f(x)单调递增;当x1时,f(x)0,此时f(x)单调递减;所以x1是f(x)的极大值点若a1,解得1a1.答案(1,)二、解答题4(2012全国卷)设函数f(x)exax2.(1)求f(x)的单调区间;(2)若a1,k为整数,且当x0时,(xk)f(x)x10,求k的最大值解(1)f(x)的定义域为(,),f(x)exa.若a0,则f(x)0,所以f(x)在(,)上单调递增;若a0,则当x(,ln a)时,f(x)0;当x(ln a,)时,f(x)0,所以,f(x)在(,ln a)上单调递减,在(ln a,)上单调递增(2)由于a1,所以(xk)f(x)x1(xk)(ex1)x1.故当x0时,(xk)f(x)x10等价于kx(x0)令g(x)x,则g(x)1.由(1)知,函数h(x)exx2在(0,)上单调递增而h(1)0,h(2)0,所以h(x)在(0,)上存在唯一的零点故g(x)在(0,)上存在唯一的零点设此零点为,则(1,2)当x(0,)时,g(x)0;当x(,)时,g(x)0.所以g(x)在(0,)上的最小值为g()又由g()0,可得e2,所以g()1(2,3)由于式等价于kg(),故整数k的最大值为2.第3讲导数的应用(二)知 识 梳 理1生活中的优化问题通常求利润最大、用料最省、效率最高等问题称为优化问题,一般地,对于实际问题,若函数在给定的定义域内只有一个极值点,那么该点也是最值点2利用导数解决生活中的优化问题的一般步骤3导数在研究方程(不等式)中的应用研究函数的单调性和极(最)值等离不开方程与不等式;反过来方程的根的个数、不等式的证明、不等式恒成立求参数等,又可转化为函数的单调性、极值与最值的问题,利用导数进行研究辨 析 感 悟1函数最值与不等式(方程)的关系(1)(教材习题改编)对任意x0,ax2(3a1)xa0恒成立的充要条件是a.()(2)(2011辽宁卷改编)已知函数f(x)ex2xa有零点,则a的取值范围是(,2ln 22()2关于实际应用问题(3)实际问题中函数定义域要由实际问题的意义和函数解析式共同确定()(4)若实际问题中函数定义域是开区间,则不存在最优解()(5)(2014郑州调研改编)已知某生产厂家的年利润y(单位:万元)与年产量x(单位:万件)的函数关系式为yx381x234,则使该生产厂家获取最大年利润的年产量为9万件()感悟提升1两个转化一是利用导数研究含参函数的单调性,常化为不等式恒成立问题注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理,如(2)2两点注意一是注意实际问题中函数定义域,由实际问题的意义和解析式共同确定,如(3)二是在实际问题中,如果函数在区间内只有一个极值点,那么可直接根据实际意义判定是最大值还是最小值,如(4);若在开区间内有极值,则一定有最优解.考点一导数与生活中的优化问题【例1】 (2013重庆卷)某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度)设该蓄水池的底面半径为r米,高为h米,体积为V立方米假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12 000元(为圆周率)(1)将V表示成r的函数V(r),并求该函数的定义域;(2)讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大解(1)因为蓄水池侧面的总成本为1002rh200rh元,底面的总成本为160r2元所以蓄水池的总成本为(200rh160r2)元又根据题意得200rh160r212 000,所以h(3004r2),从而V(r)r2h(300r4r3)因r0,又由h0可得r0,故V(r)在(0,5)上为增函数;当r(5,5)时,V(r)0,故V(r)在(5,5)上为减函数由此可知,V(r)在r5处取得最大值,此时h8.即当r5,h8时,该蓄水池的体积最大.规律方法 求实际问题中的最大值或最小值时,一般是先设自变量、因变量,建立函数关系式,并确定其定义域,利用求函数的最值的方法求解,注意结果应与实际情况相结合用导数求解实际问题中的最大(小)值时,如果函数在开区间内只有一个极值点,那么依据实际意义,该极值点也就是最值点【训练1】 为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)(0x10),若不建隔热层,每年能源消耗费用为8万元设f(x)为隔热层建造费用与20年的能源消耗费用之和(1)求k的值及f(x)的表达式;(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值解(1)设隔热层厚度为x cm,由题设,每年能源消耗费用为C(x).再由C(0)8,得k40,因此C(x).又建造费用为C1(x)6x.则隔热层建造费用与20年的能源消耗费用之和为f(x)20C(x)C1(x)206x6x(0x10)(2)f(x)6,令f(x)0,即6.解得x5或(舍去)当0x5时,f(x)0,当5x10时,f(x)0,故x5是f(x)的最小值点,对应的最小值为f(5)6570.当隔热层修建5 cm厚时,总费用达到最小值70万元考点二导数在方程(函数零点)中的应用【例2】 (2013北京卷)已知函数f(x)x2xsin xcos x.(1)若曲线yf(x)在点(a,f(a)处与直线yb相切,求a与b的值;(2)若曲线yf(x)与直线yb有两个不同交点,求b的取值范围解由f(x)x2xsin xcos x,得f(x)x(2cos x),(1)yf(x)在点(a,f(a)处与直线yb相切f(a)a(2cos a)0且bf(a),则a0,bf(0)1.(2)设g(x)f(x)bx2xsin xcos xb,令g(x)f(x)0x(2cos x)0,得x0.当x变化时,g(x),g(x)的变化情况如下表:x(,0)0(0,)g(x)0g(x)1b所以函数f(x)在区间(,0)上单调递减,在区间(0,)上单调递增,且g(x)的最小值为g(0)1b.当1b0时,即b1时,g(x)0至多有一个实根,曲线yf(x)与y1最多有一个交点,不合题意当1b0时,即b1时,有g(0)1b0,g(2b)4b22bsin 2bcos 2bb4b22b1b4b2b1b0.yg(x)在(0,2b)内存在零点,又yg(x)在R上是偶函数,且g(x)在(0,)上单调递增,yg(x)在(0,)上有唯一零点,在(,0)也有唯一零点故当b1时,yg(x)在R上有两个零点,则曲线yf(x)与直线yb有两个不同交点综上可知,如果曲线yf(x)与直线yb有且只有两个不同交点,那么b的取值范围是(1,)规律方法 (1)在解答第(2)问时,可转化为判定f(x)b有两个实根时实数b应满足的条件,并注意g(x)的单调性、奇偶性、最值的灵活应用,另外也可作出函数yf(x)的大致图象,直观判定曲线交点个数,但应注意严谨性,进行必要的论证(2)该类问题的求解,一般利用导数研究函数的单调性、极值等性质,并借助函数图象,根据零点或图象的交点情况,建立含参数的方程(或不等式)组求解,实现形与数的和谐统一【训练2】 (2012天津卷节选)已知函数f(x)x3x2axa,xR,其中a0.(1)求函数f(x)的单调区间;(2)若函数f(x)在区间(2,0)内恰有两个零点,求a的取值范围解(1)f(x)x2(1a)xa(x1)(xa)由f(x)0,得x1或xa(a0)当x变化时,f(x),f(x)的变化情况如下表:x(,1)1(1,a)a(a,)f(x)00f(x)极大值极小值故函数f(x)的单调递增区间是(,1),(a,);单调递减区间是(1,a)(2)由(1)知f(x)在区间(2,1)内单调递增,在区间(1,0)内单调递减,从而函数f(x)在区间(2,0)内恰有两个零点当且仅当解得0a.所以a的取值范围是.考点三导数在不等式中的应用【例3】 (2014泰安一模)已知函数f(x)xln x.(1)若函数g(x)f(x)ax在区间e2,)上为增函数,求a的取值范围;(2)若对任意x(0,),f(x)恒成立,求实数m的最大值审题路线(1)转化为g(x)0在e2,)上恒成立问题(2)代入f(x)分离出m构造函数t(x)求t(x)根据单调性求t(x)的最值得出m的范围得出结论解(1)由题意得g(x)f(x)aln xa1,函数g(x)在区间e2,)上为增函数,当xe2,)时,g(x)0,即ln xa10在e2,)上恒成立,a1ln x,令h(x)ln x1,当xe2,)时,ln x2,),h(x)(,3,a的取值范围是3, )(2)2f(x)x2mx3,即mx2xln xx23,又x0,m,令t(x)2ln xx,t(x)1,令t(x)0得x1或3(舍)当x(0,1)时,t(x)0,t(x)在(0,1)上单调递减,当x(1,)时,t(x)0,t(x)在(1,)上单调递增t(x)mint(1)4,mt(x)min4,即m的最大值为4.规律方法 (1)若可导函数f(x)在指定的区间D上单调递增(减),求参数范围,可转化为f(x)0(或f(x)0)恒成立问题,从而构建不等式,要注意“”是否可以取到(2)由不等式的恒成立求参数问题首先要构造函数,利用导数研究函数的单调性,求
展开阅读全文
相关资源
相关搜索

最新文档


当前位置:首页 > 办公文档 > 工作计划


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!