新课标高中数学 1.1.1正弦定理教学设计 新人教A版必修5

上传人:痛*** 文档编号:64100151 上传时间:2022-03-21 格式:DOC 页数:13 大小:497KB
返回 下载 相关 举报
新课标高中数学 1.1.1正弦定理教学设计 新人教A版必修5_第1页
第1页 / 共13页
新课标高中数学 1.1.1正弦定理教学设计 新人教A版必修5_第2页
第2页 / 共13页
新课标高中数学 1.1.1正弦定理教学设计 新人教A版必修5_第3页
第3页 / 共13页
点击查看更多>>
资源描述
2019届数学人教版精品资料1.1.1正弦定理从容说课本章内容是处理三角形中的边角关系,与初中学习的三角形的边与角的基本关系有密切的联系,与已知三角形的边和角相等判定三角形全等的知识也有着密切的联系教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题”这样,用联系的观点,从新的角度看过去的问题,使学生对于过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,形成良好的知识结构教学重点1.正弦定理的概念;2.正弦定理的证明及其基本应用教学难点1.正弦定理的探索和证明;2.已知两边和其中一边的对角解三角形时判断解的个数教具准备直角三角板一个 一、知识与技能1.通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;2.会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题二、过程与方法1.让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系;2.引导学生通过观察、推导、比较,由特殊到一般归纳出正弦定理;3.进行定理基本应用的实践操作三、情感态度与价值观1.培养学生在方程思想指导下处理解三角形问题的运算能力;2.培养学生探索数学规律的思维能力,通过三角函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一教学过程导入新课师如右图,固定ABC的边CB及B,使边AC绕着顶点C转动师思考:C的大小与它的对边AB的长度之间有怎样的数量关系?生显然,边AB的长度随着其对角C的大小的增大而增大师能否用一个等式把这种关系精确地表示出来?师在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系如右图,在RtABC中,设BC =A,AC =B,AB =C,根据锐角三角函数中正弦函数的定义,有=sinA, =sinB,又sinC=1=,则.从而在直角三角形ABC中,.推进新课 合作探究师那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析)生可分为锐角三角形和钝角三角形两种情况:如右图,当ABC是锐角三角形时,设边AB上的高是CD,根据任意角三角函数的定义,有CD=AsinB=BsinA,则,同理,可得.从而.(当ABC是钝角三角形时,解法类似锐角三角形的情况,由学生自己完成)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即.师是否可以用其他方法证明这一等式?生可以作ABC的外接圆,在ABC中,令BC=A,AC=B,AB=C,根据直径所对的圆周角是直角以及同弧所对的圆周角相等,来证明这一关系师很好!这位同学能充分利用我们以前学过的知识来解决此问题,我们一起来看下面的证法. 在ABC中,已知BC=A,AC=B,AB=C,作ABC的外接圆,O为圆心,连结BO并延长交圆于B,设BB=2R.则根据直径所对的圆周角是直角以及同弧所对的圆周角相等可以得到BAB=90,C =B,sinC=sinB=.同理,可得.这就是说,对于任意的三角形,上述关系式均成立,因此,我们得到等式.点评:上述证法采用了初中所学的平面几何知识,将任意三角形通过外接圆性质转化为直角三角形进而求证,此证法在巩固平面几何知识的同时,易于被学生理解和接受,并且消除了学生所持的“向量方法证明正弦定理是唯一途径”这一误解.既拓宽了学生的解题思路,又为下一步用向量方法证明正弦定理作了铺垫. 知识拓展师接下来,我们可以考虑用前面所学的向量知识来证明正弦定理.从定理内容可以看出,定理反映的是三角形的边角关系,而在向量知识中,哪一知识点体现边角关系呢?生向量的数量积的定义式AB=|A|B|Cos,其中为两向量的夹角.师回答得很好,但是向量数量积涉及的是余弦关系而非正弦关系,这两者之间能否转化呢?生 可以通过三角函数的诱导公式sin=Cos(90-)进行转化.师这一转化产生了新角90-,这就为辅助向量j的添加提供了线索,为方便进一步的运算,辅助向量选取了单位向量j,而j垂直于三角形一边,且与一边夹角出现了90-这一形式,这是作辅助向量j垂直于三角形一边的原因.师在向量方法证明过程中,构造向量是基础,并由向量的加法原则可得 而添加垂直于的单位向量j是关键,为了产生j与、的数量积,而在上面向量等式的两边同取与向量j的数量积运算,也就在情理之中了.师下面,大家再结合课本进一步体会向量法证明正弦定理的过程,并注意总结在证明过程中所用到的向量知识点.点评: (1)在给予学生适当自学时间后,应强调学生注意两向量的夹角是以同起点为前提,以及两向量垂直的充要条件的运用.(2)要求学生在巩固向量知识的同时,进一步体会向量知识的工具性作用.向量法证明过程:(1)ABC为锐角三角形,过点A作单位向量j垂直于,则j与的夹角为90-A,j与的夹角为90-C.由向量的加法原则可得,为了与图中有关角的三角函数建立联系,我们在上面向量等式的两边同取与向量j的数量积运算,得到由分配律可得.|j|Cos90+|j|Cos(90-C)=|j|Cos(90-A).AsinC=CsinA.另外,过点C作与垂直的单位向量j,则j与的夹角为90+C,j与的夹角为90+B,可得.(此处应强调学生注意两向量夹角是以同起点为前提,防止误解为j与的夹角为90-C,j与的夹角为90-B).(2)ABC为钝角三角形,不妨设A90,过点A作与垂直的单位向量j,则j与的夹角为A-90,j与的夹角为90-C.由,得j+j=j,即ACos(90-C)=CCos(A-90),AsinC=CsinA.另外,过点C作与垂直的单位向量j,则j与的夹角为90+C,j与夹角为90+B.同理,可得.(形式1).综上所述,正弦定理对于锐角三角形、直角三角形、钝角三角形均成立.师在证明了正弦定理之后,我们来进一步学习正弦定理的应用. 教师精讲(1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k使A=ksinA,B=ksinB,C=ksinC;(2)等价于 (形式2).我们通过观察正弦定理的形式2不难得到,利用正弦定理,可以解决以下两类有关三角形问题. 已知三角形的任意两角及其中一边可以求其他边,如.这类问题由于两角已知,故第三角确定,三角形唯一,解唯一,相对容易,课本P4的例1就属于此类问题.已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如此类问题变化较多,我们在解题时要分清题目所给的条件一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形师接下来,我们通过例题评析来进一步体会与总结.例题剖析【例1】在ABC中,已知A=32.0,B=81.8,A=42.9 cm,解三角形.分析:此题属于已知两角和其中一角所对边的问题,直接应用正弦定理可求出边B,若求边C,再利用正弦定理即可.解:根据三角形内角和定理,C=180-(A+B)=180-(32.0+81.8)=66.2;根据正弦定理,b=80.1(cm);c=74.1(cm).方法引导 (1)此类问题结果为唯一解,学生较易掌握,如果已知两角和两角所夹的边,也是先利用内角和180求出第三角,再利用正弦定理.(2)对于解三角形中的复杂运算可使用计算器.【例2】在ABC中,已知A=20cm,B=28cm,A=40,解三角形(角度精确到1,边长精确到1 cm)分析:此例题属于BsinAab的情形,故有两解,这样在求解之后呢,无需作进一步的检验,使学生在运用正弦定理求边、角时,感到目的很明确,同时体会分析问题的重要性.解:根据正弦定理,sinB =0.899 9.因为0B180,所以B64或B116.(1)当B64时,C =180-(A+B)=180-(40+64)=76,C =30(cm).(2)当B116时,C=180-(A+B)=180-(40+116)=24,C=13(cm). 方法引导通过此例题可使学生明确,利用正弦定理求角有两种可能,但是都不符合题意,可以通过分析获得,这就要求学生熟悉已知两边和其中一边的对角时解三角形的各种情形.当然对于不符合题意的解的取舍,也可通过三角形的有关性质来判断,对于这一点,我们通过下面的例题来体会.变式一:在ABC中,已知A60,B50,A38,求B(精确到1)和C(保留两个有效数字). 分析:此题属于AB这一类情形,有一解,也可根据三角形内大角对大边,小角对小边这一性质来排除B为钝角的情形.解:已知BA,所以BB的情形,有一解,可应用正弦定理求解角B后,利用三角形内角和为180排除角B为钝角的情形.解:sinB=0.618 6,B38或B142(舍去).C =180-(A+B)=22. C =12. 方法引导(1)此题要求学生注意考虑问题的全面性,对于角B为钝角的排除也可以结合三角形小角对小边性质而得到.(2)综合上述例题要求学生自我总结正弦定理的适用范围,已知两角一边或两边与其中一边的对角解三角形.(3)对于已知两边夹角解三角形这一类型,将通过下一节所学习的余弦定理来解.师为巩固本节我们所学内容,接下来进行课堂练习:1.在ABC中(结果保留两个有效数字),(1)已知C =,A =45,B=60,求B;(2)已知B12,A30,B120,求A.解:(1)C=180-(A+B)=180-(45+60)=75,B =1.6.(2),A =6.9.点评:此题为正弦定理的直接应用,意在使学生熟悉正弦定理的内容,可以让数学成绩较弱的学生进行在黑板上解答,以增强其自信心.2.根据下列条件解三角形(角度精确到1,边长精确到1):(1)B=11,A=20,B=30;(2)A=28,B=20,A=45;(3)C =54,B=39,C=115;(4)A=20,B=28,A=120.解: (1) .sinA =0.909 1.A165,A2115.当A165时,C1=180-(B+A1)=180-(30+65)=85,C1=22.当A2115时,C2=180-(B+A2)=180-(30+115)=35,C2=13.(2)sinB=0.505 1,B130,B2150.由于A+B2=45+150180,故B2150应舍去(或者由BA知BA,故B应为锐角).C=180-(45+30)=105.C=38.(3),sinB=0.654 6.B141,B2139.由于BC,故BC,B2139应舍去.当B=41时,A=180-(41+115)=24,A=24.(4) sinB= =1.2121.本题无解.点评:此练习目的是使学生进一步熟悉正弦定理,同时加强解三角形的能力,既要考虑到已知角的正弦值求角的两种可能,又要结合题目的具体情况进行正确取舍.课堂小结通过本节学习,我们一起研究了正弦定理的证明方法,同时了解了向量的工具性作用,并且明确了利用正弦定理所能解决的两类有关三角形问题:已知两角、一边解三角形;已知两边和其中一边的对角解三角形.布置作业(一)课本第10页习题1.1第1、2题.(二)预习内容:课本P5P 8余弦定理 预习提纲(1)复习余弦定理证明中所涉及的有关向量知识.(2)余弦定理如何与向量产生联系.(3)利用余弦定理能解决哪些有关三角形问题.板书设计正弦定理1.正弦定理: 2.证明方法: 3.利用正弦定理,能够解决两类问题: (1)平面几何法 (1)已知两角和一边(2)向量法 (2)已知两边和其中一边的对角习题详解(课本第5页练习)1.解:(1),a =14.B=180-A-C=105,b=19.(2)C =180-A-B=180-60-45=75,a=18,b =15.2.解:(1),sinA=.又0A180,A65或A115.当A65时,C =180-A-B=180-65-30=85,c=22.当A115时,C =180-115-30=35,c =13.(2),sinB =0.007 2.又B为锐角,B41,A24,A=24.备课资料一、知识总结1.判断三角形解的方法“已知两边和其中一边的对角”解三角形,这类问题分为一解、二解和无解三种情况.一方面,我们可以利用课本上的几何图形加以理解,另一方面,也可以利用正弦函数的有界性进行分析. 设已知A、B、A,则利用正弦定理,如果sinB1,则问题无解.如果sinB1,则问题有一解;如果求出的sinB1,则可得B的两个值,但要通过“三角形内角和定理”或“大边对大角”等三角形有关性质进行判断.2.利用三角形面积证明正弦定理已知ABC,设BCA, CAB,ABC,作ADBC,垂足为D.则RtADB中, ,AD=ABsinB=csinB.SABC=.同理,可证 SABC=. SABC=.absinc=bcsinA=acsinB,在等式两端同除以ABC,可得.即.3.利用正弦定理进行边角互换对于三角形中的三角函数,在进行恒等变形时,常常将正弦定理写成A=2RsinA,B=2RsinB,C=2RsinC或sinA=.(R为ABC外接圆半径)这样可以很方便地把边和角的正弦进行转换,我们将在以后具体应用.二、典型例题1若ABC中(A2+B2)sin(A-B)=(A2-B2)sinC,则ABC是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形分析:运用正弦定理A=2RsinA,B=2RsinB以及结论sin2A-sin2B =sin(A+B)sin(A-B),由(A2+ B2)sin(A-B) = (A2- B2)sinC,(sin2A+sin2B)sin(A-B) =(sin2A-sin2B)sinC=sin(A+B)sin(A-B)sinC.若sin(A-B)= 0,则 A = B.若sin(A-B)0,则sin2A+sin2B=sin2CA2+B2=C2.ABC为等腰三角形或直角三角形.故答案选D.2.在ABC中,A=45,BC = 45,最大边长为10,求角B、C,外接圆半径及面积S.分析:由A+B+C=180及BC=45,可得B=4K,C=5K,则9K=135,故K=15.那么B=60,C =75.由正弦定理,由面积公式.点评:求面积时B未知但可转化为B=2RsinB,从而解决问题.3.在ABC中,已知A=30,A、B分别为角A、B对边,且A=4,B=4,解此三角形.分析:由正弦定理知.那么B1=60,C1=90,C1=8或B2=120,C2=30,C2=4.点评:若已知三角形两边和其中一边上的对角,如图可以看出满足条件的三角形有2个.4.已知ABC的三个内角成等差数列并且tanAtanC =2+,(1)求A、B、C的度数;(2)若AB边上的高CD=4,求三边A、B、C的长分析:(1)由2B=A+C,得B=60,则A+C=120,. 即(2+3)COsACOsC-sinAsinC=0 (1+)COsACOsC+ (COsACOsC-sinAsinC)=0 (1+)COs(A+C)+COs(A-C)+COs(A+C)=0- +COs(A-C)+COs(A+C)=0.COs(A-C)=.得|A-C|=30.又A+C=120.A=45,C=75或A=75,C=45.(2)如图,若ABC,由正弦定理得A=8,B=4,C=BCOsA+ACOsB=4(+1).同理,若ABC时,则A=4(3+1),B=46,,C =8. 点评:这类具有一定综合性的题目,恒等变形有一定的技巧.由三个角成等差得A+C=120,恒等变形的目标就是寻找A与C的关系,用恒等变形的方法的观点对条件等式进行转化此题还可以由tanAtanC =2+求出tanA+tanC =3+,运用韦达定理解出tanA和tanC,这对综合能力的训练大有益处
展开阅读全文
相关资源
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 成人自考


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!