资源描述
一、填空题1三边长均为整数,且最大边长为11的三角形的个数为_解析:设另两边长分别为x、y,且不妨设1xy11,要构成三角形,必须xy12.当y取11时,x1,2,3,11,可有11个三角形;当y取10时,x2,3,10,可有9个三角形;当y取6时,x只能取6,只有1个三角形所求三角形的个数为119753136.答案:362将1,2,3,4,5,6,7,8,9这9个数字填在如图的9个空格中,要求每一行从左到右、每一列从上到下分别依次增大,当3,4固定在图中的位置时,填写空格的方法种数为_34解析:如图所示,根据题意,1,2,9三个数字的位置是确定的,余下的数中,5只能在a,c位置,8只能在b,d位置,依(a,b,c,d)顺序,具体有(5,8,6,7),(5,6,7,8),(5,7,6,8),(6,7, 5,8),(6,8,5,7),(7,8,5,6),合计6种.12a34bcd9答案:63.如图,一环形花坛分成A,B,C,D四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为_解析:可依次种A、B、C、D四块,当C与A种同一种花时,有431336(种)种法;当C与A所种花不同时,有432248(种)种法,由分类计数原理,不同的种法总数为364884.答案:844直线方程AxBy0,若从0,1,2,3,5,7这6个数字中任取两个不同的数作为A、B的值,则可表示_条不同的直线解析:分成三类:A0,B0;A0,B0和A0,B0,前两类各表示1条直线;第三类先取A有5种取法,再取B有4种取法,故有5420(种)所以可以表示22条不同的直线答案:225.如图,某电子元件,是由3个电阻组成的回路,其中有4个焊点A、B、C、D,若某个焊点脱落,整个电路就不通,现在发现电路不通了,那么焊点脱落的可能情况共有_种解析:解法一当线路不通时焊点脱落的可能情况共有2222115(种)解法二恰有i个焊点脱落的可能情况为C(i1,2,3,4)种,由分类计数原理,当电路不通时焊点脱落的可能情况共CCCC15(种)答案:156五名学生报名参加四项体育比赛,每人限报一项,则报名方法的种数为_五名学生争夺四项比赛的冠军(冠军不并列),获得冠军的可能性有_种答案:45547从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lg alg b的不同值的个数是_解析:由于lg alg blg (a0,b0),从1,3,5,7,9中任取两个作为有A20种,又与相同,与相同,lg alg b的不同值的个数有A220218.答案:188某次活动中,有30人排成6行5列,现要从中选出3人进行礼仪表演,要求这3人中的任意2人不同行也不同列,则不同的选法种数为_(用数字作答)解析:其中最先选出的一个人有30种方法,此时不能再从这个人所在的行和列上选人,还剩一个5行4列的队形,故选第二个人有20种方法,此时不能再从该人所在的行和列上选人,还剩一个4行3列的队形,此时第三个人的选法有12种,根据分步计数原理,总的选法种数是3020127 200.答案:7 2009已知集合M1,2,3,N4,5,6,7,从M,N这两个集合中各选一个元素分别作为点的横坐标、纵坐标,则这样的坐标在直角坐标系中可表示第一、第二象限内不同的点的个数是_解析:分两类:第一类,第一象限内的点,有224(个);第二类,第二象限内的点,有122(个)共426(个)答案:6二、解答题10已知集合Aa1,a2,a3,a4,B0,1,2,3,f是从A到B的映射(1)若B中每一元素都有原象,这样不同的f有多少个?(2)若B中的元素0必无原象,这样的f有多少个?(3)若f满足f(a1)f(a2)f(a3)f(a4)4,这样的f又有多少个?解析:(1)显然对应是一一对应的,即为a1找象有4种方法,a2找象有3种方法,a3找象有2种方法,a4找象有1种方法,所以不同的f共有432124(个)(2)0必无原象,1,2,3有无原象不限,所以为A中每一元素找象时都有3种方法所以不同的f共有3481(个)(3)分为如下四类:第一类:A中每一元素都与1对应,有1种方法;第二类:A中有两个元素对应1,一个元素对应2,另一个元素与0对应,有CC12(种)方法;第三类,A中有两个元素对应2,另两个元素对应0,有CC6(种)方法;第四类,A中有一个元素对应1,一个元素对应3,另两个元素与0对应,有CC12(种)方法所以不同的f共有11261231 (个)11某外语组有9人,每人至少会英语和日语中的一门,其中7人会英语,3人会日语,从中选出会英语和日语的各一人,有多少种不同的选法?解析:由题意得有1人既会英语又会日语,6人只会英语,2人只会日语第一类:从只会英语的6人中选1人说英语,共有6种方法,则说日语的有213(种),此时共有6318(种);第二类:不从只会英语的6人中选1人说英语,则只有1种方法,则选会日语的有2种,此时共有122(种);所以根据分类计数原理知共有18220(种)选法12在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为多少?解析:分0个相同、1个相同、2个相同讨论(1)若0个相同,则信息为1001.共1个(2)若1个相同,则信息为0001,1101,1011,1000.共4个(3)若2个相同,又分为以下情况:若位置一与二相同,则信息为0101;若位置一与三相同,则信息为0011;若位置一与四相同,则信息为0000;若位置二与三相同,则信息为1111;若位置二与四相同,则信息为1100;若位置三与四相同,则信息为1010.共6个故与信息0110至多有两个对应位置上的数字相同的信息个数为14611.
展开阅读全文