资源描述
精选优质文档-倾情为你奉上第八节 雅可比迭代法与高斯塞德尔迭代法一 雅可比迭代法设线性方程组 (1)的系数矩阵A可逆且主对角元素均不为零,令 并将A分解成 (2)从而(1)可写成 令 其中. (3)以为迭代矩阵的迭代法(公式) (4)称为雅可比(Jacobi)迭代法(公式),用向量的分量来表示,(4)为 (5)其中为初始向量.由此看出,雅可比迭代法公式简单,每迭代一次只需计算一次矩阵和向量的乘法.在电算时需要两组存储单元,以存放及.例1 例1 用雅可比迭代法求解下列方程组解 将方程组按雅可比方法写成取初始值按迭代公式进行迭代,其计算结果如表1所示 表1 0 1 2 3 4 5 6 700.720.9711.0571.08531.09511.0983 00.831.0701.15711.18531.19511.1983 00.841.1501.24821.28281.29411.2980 二 高斯塞德尔迭代法由雅可比迭代公式可知,在迭代的每一步计算过程中是用的全部分量来计算的所有分量,显然在计算第i个分量时,已经计算出的最新分量没有被利用,从直观上看,最新计算出的分量可能比旧的分量要好些.因此,对这些最新计算出来的第次近似的分量加以利用,就得到所谓解方程组的高斯塞德(Gauss-Seidel)迭代法.把矩阵A分解成 (6) 其中,分别为的主对角元除外的下三角和上三角部分,于是,方程组(1)便可以写成 即其中 (7)以为迭代矩阵构成的迭代法(公式) (8)称为高斯塞德尔迭代法(公式),用 量表示的形式为 (9)由此看出,高斯塞德尔迭代法的一个明显的优点是,在电算时,只需一组存储单元(计算出后不再使用,所以用冲掉,以便存放近似解.例2 例2 用高斯塞德尔迭代法求解例1.解 取初始值,按迭代公式进行迭代,其计算结果如下表2 表2 0 1 2 3 4 5 6 700.721.043081.093131.099131.099891.09999 1.100.9021.167191.195721.199471.199931.19999 1.201.16441.282051.297771.299721.299961.3 1.3从此例看出,高斯塞德尔迭代法比雅可比迭代法收敛快(达到同样的精度所需迭代次数少),但这个结论,在一定条件下才是对的,甚至有这样的方程组,雅可比方法收敛,而高斯塞德尔迭代法却是发散的.三 迭代收敛的充分条件定理1 在下列任一条件下,雅可比迭代法(5)收敛. ; ; 定理2 设分别为雅可比迭代矩阵与高斯塞德尔迭代矩阵,则 (10)从而,当时,高斯塞德尔迭代法(8)收敛.证明 由的定义,它们可表示成用表示维向量,则有不等式这里,记号表示其中矩阵的元素都取绝对值,而不等式是对相应元素来考虑的,于是容易验证所以,及可逆,且从而有因此必有因为已知所以.即高斯塞德尔迭代法收敛.若矩阵为对称,我们有定理3 若矩阵正定,则高斯塞德尔迭代法收敛.证明 把实正定对称矩阵A分解为 ,则为正定的,迭代矩阵设是的任一特征值,为相应的特征向量,则以左乘上式两端,并由有用向量的共轭转置左乘上式两端,得 (11)求上式左右两端的共轭转置,得以和分别乘以上二式然后相加,得由,得即 (12)因为A和D都是正定的,且x不是零向量,所以由(11)式得,而由(12)式得, 即,从而,因而高斯塞德尔迭代法收敛.定义1 设为n阶矩阵. 如果 (13)即A的每一行对角元素的绝对值都严格大于同行其他元素绝对值之和,则称A为严格对角优势矩阵. 如果且至少有一个不等式严格成立,则称A为弱对角优势矩阵.例如是严格对角优势矩阵,是弱对角优势矩阵.定义2 设是n阶矩阵,如果经过行的互换及相应列的互换可化为, 即存在n阶排列矩阵P,使 其中为方阵,则称A是可约的,否则称A为不可约的.是可约矩阵,意味着可经过若干次行列重排,化为两个低阶方程组,事实上, 可化为 ,记于是,求解化为求解可以证明,如果A为严格对角优势矩阵或为不可约弱对角优势矩阵,则A是非奇异的.定理4 如果A为严格对角优势矩阵或为不可约弱对角优势矩阵,则对任意,雅可比迭代法(4)与高斯塞德尔迭代法(8)均为收敛的.证明 下面我们以A为不可约弱对角优势矩阵为例,证明雅可比迭代法收敛,其他证明留给读者.要证明雅可比迭代法收敛,只要证,是迭代矩阵.用反证法,设矩阵有某个特征值,使得,则,由于A不可约,且具有弱对角优势,所以存在,且从而 另一方面,矩阵与矩阵A的非零元素的位置是完全相同的,所以也是不可约的,又由于,且A弱对角优势,所以并且至少有一个i使不等号严格成立.因此,矩阵弱对角优势,故为不可约弱对角优势矩阵.从而 矛盾,故的特征值不能大于等于1,定理得证.专心-专注-专业
展开阅读全文