资源描述
指数函数和对数函数复习回顾综合脉络1. 以指数函数、对数函数为中心的综合网络2. 指数式与对数式有如下关系(指数式化为对数式或对数式化为指数式的重要依据):且指数函数与对数函数互为反函数, 它们的图象关于直线对称, 指数函数与对数函数的性质可以自己总结做表对比。3. 指数函数,对数函数是高考重点之一指数函数,对数函数是两类重要的基本初等函数, 高考中既考查双基, 又考查对蕴含其中的函数思想、等价转化、分类讨论等思想方法的理解与运用. 因此应做到能熟练掌握它们的图象与性质并能进行一定的综合运用.典型例题讲解:例1.定义在R上的函数满足,当时,(1) 求的值;(2) 比较与的大小解:(1), ,.,(2) 而例2方程lgx+x=3的解所在区间为( )A(0,1) B(1,2)C(2,3) D(3,+)分析:在同一平面直角坐标系中,画出函数y=lgx与y=-x+3的图象(如图2)它们的交点横坐标,显然在区间(1,3)内,由此可排除A,D至于选B还是选C,由于画图精确性的限制,单凭直观就比较困难了实际上这是要比较与2的大小当x=2时,lgx=lg2,3-x=1由于lg21,因此2,从而判定(2,3),故本题应选C说明:本题是通过构造函数用数形结合法求方程lgx+x=3解所在的区间数形结合,要在结合方面下功夫不仅要通过图象直观估计,而且还要计算的邻近两个函数值,通过比较其大小进行判断例3.设a0, f (x)是R上的奇函数.(1) 求a的值;(2) 试判断f (x )的反函数f1 (x)的奇偶性与单调性.解:(1) 因为在R上是奇函数, 所以,(2) , 为奇函数. 用定义法可证为单调增函数.(也可用原函数证明)例4. 是否存在实数a, 使函数f (x )在区间上是增函数? 如果存在,说明a可以取哪些值; 如果不存在, 请说明理由.解: 设, 对称轴.(1) 当时, ; (2) 当时, . 综上所述: 例5定义在R上的单调函数f(x)满足f(3)=log3且对任意x,yR都有f(x+y)=f(x)+f(y)(1)求证f(x)为奇函数;(2)若f(k3)+f(3-9-2)0对任意xR恒成立,求实数k的取值范围分析:欲证f(x)为奇函数即要证对任意x都有f(-x)=-f(x)成立在式子f(x+y)=f(x)+f(y)中,令y=-x可得f(0)=f(x)+f(-x)于是又提出新的问题,求f(0)的值令x=y=0可得f(0)=f(0)+f(0)即f(0)=0,f(x)是奇函数得到证明(1)证明:f(x+y)=f(x)+f(y)(x,yR), 令x=y=0,代入式,得f(0+0)=f(0)+f(0),即 f(0)=0令y=-x,代入式,得 f(x-x)=f(x)+f(-x),又f(0)=0,则有0=f(x)+f(-x)即f(-x)=-f(x)对任意xR成立,所以f(x)是奇函数(2)解:f(3)=log30,即f(3)f(0),又f(x)在R上是单调函数,所以f(x)在R上是增函数,又由(1)f(x)是奇函数f(k3)-f(3-9-2)=f(-3+9+2), k3-3+9+2,3-(1+k)3+20对任意xR成立令t=30,问题等价于t-(1+k)t+20对任意t0恒成立R恒成立说明:问题(2)的上述解法是根据函数的性质f(x)是奇函数且在xR上是增函数,把问题转化成二次函数f(t)=t-(1+k)t+2对于任意t0恒成立对二次函数f(t)进行研究求解本题还有更简捷的解法:分离系数由k3-3+9+2得上述解法是将k分离出来,然后用平均值定理求解,简捷、新颖例6已知函数f(x)=logm(1)若f(x)的定义域为,(0),判断f(x)在定义域上的增减性,并加以说明;(2)当0m1时,使f(x)的值域为logmm(1),logmm(1)的定义域区间为,(0)是否存在?请说明理由.命题意图:本题重在考查函数的性质,方程思想的应用.知识依托:函数单调性的定义判断法;单调性的应用;方程根的分布;解不等式组.错解分析:第(1)问中考生易忽视“3”这一关键隐性条件;第(2)问中转化出的方程,不能认清其根的实质特点,为两大于3的根.技巧与方法:本题巧就巧在采用了等价转化的方法,借助函数方程思想,巧妙解题.解:(1)x3或x3.f(x)定义域为,3设x1x2,有当0m1时,f(x)为减函数,当m1时,f(x)为增函数.(2)若f(x)在,上的值域为logmm(1),logmm(1)0m1, f(x)为减函数.即即,为方程mx2+(2m1)x3(m1)=0的大于3的两个根 0m故当0m时,满足题意条件的m存在.
展开阅读全文