电力电子技术实验指导书

上传人:努力****83 文档编号:46393920 上传时间:2021-12-13 格式:DOC 页数:33 大小:4.33MB
返回 下载 相关 举报
电力电子技术实验指导书_第1页
第1页 / 共33页
电力电子技术实验指导书_第2页
第2页 / 共33页
电力电子技术实验指导书_第3页
第3页 / 共33页
点击查看更多>>
资源描述
电力电子技术实验指导书石家庄铁道学院四方学院电气工程系二零零九年十二月二十日前 言本书是按照电力电子技术这门课程的教学大纲和教学内容的要求,配合MCL-型电力电子及电气传动实验台而编写的实验教材,重点介绍了实验的工作原理及实验方法,围绕该实验系统的功能,设计编写了11个电力电子技术实验,其中包括晶闸管触发电路、整流电路实验、有源逆变实验、单相调压技术实验、直流斩波以及单相交交变频等实验。对试验台各组成模块进行了详细说明,为学生正确使用和了解试验台的性能提供了必要的参考资料。通过本课程的实践环节,可使学生对功率半导体器件、可控整流电路、有源逆变电路、变频电路、交流调压电路、直流斩波电路,以及对触发电路、驱动电路内容的学习有更进一步的深入了解,使学生具有初步设计、调试、分析电力电子变流装置等方面的能力。限于编者学识和水平有限,书中难免存在缺点和疏漏,衷心欢迎使用本书的师生及其他读者批评指正。电 力 电 子 技 术目 录实验一 锯齿波同步移相触发电路实验2实验二 单相桥式半控整流电路实验4实验三 单相桥式全控整流电路实验 7实验四 单相桥式有源逆变电路实验10实验五 三相半波可控整流电路的研究13实验六 三相桥式全控整流及有源逆变电路实验15实验七 单相交流调压电路实验18实验八 采用自关断器件的单相交流调压电路研究21实验九 直流斩波电路的性能研究24实验十 单相交直交变频电路的性能研究27实验十一 单相交直交变频电路(调速)30实验一 锯齿波同步移相触发电路实验一实验目的1加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。2掌握锯齿波同步触发电路的调试方法。二实验内容 1锯齿波同步触发电路的调试。2锯齿波同步触发电路各点波形观察,分析。 三实验线路及原理锯齿波同步移相触发电路主要由脉冲形成和放大,锯齿波形成,同步移相等环节组成,其工作原理可参见“电力电子技术”教材第二章第九节。四实验设备及仪器1教学实验台主控制屏2NMCL33组件3NMCL05(A)组件或NMCL36组件4NMEL03组件5NMCL31A组件6二踪示波器7万用表五实验方法 1将NMCL-05(A)面板上左上角的同步电压输入接NMCL002的U、V端,“触发电路选择锯齿波”。2合上主电路电源开关,三相调压器主控制屏输出电压Uuv=220v,并打开MCL05面板右下角的电源开关。用示波器观察各观察孔的电压波形,示波器的地线接于“7”端。同时观察“1”、“2”孔的波形,了解锯齿波宽度和“1”点波形的关系。观察“3”“5”孔波形及输出电压UG1K1的波形,调整电位器RP1,使“3”的锯齿波刚出现平顶,记下各波形的幅值与宽度,比较“3”孔电压U3与U5的对应关系。3调节脉冲移相范围将NMCL31A的“G”输出电压调至0V,即将控制电压Uct调至零,用示波器观察U2电压(即“2”孔)及U5的波形,调节偏移电压Ub(即调RP),使a=180O。调节NMCL31A的给定电位器RP1,增加Uct,观察脉冲的移动情况,要求Uct=0时,a=180O,Uct=Umax时,a=30O,以满足移相范围a=30O180O的要求。4调节Uct,使a=60O,观察并记录U1U5及输出脉冲电压UG1K1,UG2K2的波形,并标出其幅值与宽度。用导线连接“K1”和“K3”端,用双踪示波器观察UG1K1和UG3K3的波形,调节电位器RP3,使UG1K1和UG3K3间隔1800。六实验报告1整理,描绘实验中记录的各点波形,并标出幅值与宽度。2总结锯齿波同步触发电路移相范围的调试方法,移相范围的大小与哪些参数有关?3如果要求Uct=0时,a=90O,应如何调整?七注意事项1双踪示波器有两个探头,可以同时测量两个信号,但这两个探头的地线都与示波器的外壳相连接,所以两个探头的地线不能同时接在某一电路的不同两点上,否则将使这两点通过示波器发生电气短路。为此,在实验中可将其中一根探头的地线取下或外包以绝缘,只使用其中一根地线。当需要同时观察两个信号时,必须在电路上找到这两个被测信号的公共点,将探头的地线接上,两个探头各接至信号处,即能在示波器上同时观察到两个信号,而不致发生意外。2为保护整流元件不受损坏,需注意实验步骤:(1)在主电路不接通电源时,调试触发电路,使之正常工作。(2)在控制电压Uct=0时,接通主电路电源,然后逐渐加大Uct,使整流电路投入工作。(3)正确选择负载电阻或电感,须注意防止过流。在不能确定的情况下,尽可能选择较大的电阻或电感,然后根据电流值来调整。(4)晶闸管具有一定的维持电流IH,只有流过晶闸管的电流大于IH,晶闸管才可靠导通。实验中,若负载电流太小,可能出现晶闸管时通时断,所以实验中,应保持负载电流不小于100mA。(5)本实验中,因用NMCL05组件中单结晶触发电路控制晶闸管,注意须断开NMCL33的内部触发脉冲。实验二 单相桥式半控整流电路实验一实验目的1研究单相桥式半控整流电路在电阻负载,电阻电感性负载及反电势负载时的工作。2熟悉NMCL05(A)组件(或NMCL-36)锯齿波触发电路的工作。3进一步掌握双踪示波器在电力电子线路实验中的使用特点与方法。二实验线路及原理见图1-2。三实验内容1单相桥式半控整流电路供电给电阻性负载。2单相桥式半控整流电路供电给电阻电感性负载(带续流二极管)。4单相桥式半控整流电路供电给电阻电感性负载(断开续流二极管)。四实验设备及仪器1教学实验台主控制屏2NMCL33组件3NMCL05(A)组件或NMCL36组件4NMEL03组件5NMCL31A组件6二踪示波器7万用表五注意事项1实验前必须先了解晶闸管的电流额定值(本装置为5A),并根据额定值与整流电路形式计算出负载电阻的最小允许值。2为保护整流元件不受损坏,晶闸管整流电路的正确操作步骤(1)在主电路不接通电源时,调试触发电路,使之正常工作。(2)在控制电压Uct=0时,接通主电源。然后逐渐增大Uct,使整流电路投入工作。(3)断开整流电路时,应先把Uct降到零,使整流电路无输出,然后切断总电源。3注意示波器的使用。4NMCL33的内部脉冲需断开。六实验方法1将NMCL05(A)面板左上角的同步电压输入接NMCL002的U、V输出端, 触发电路选择锯齿波。合上主电路电源开关,三相调压器主控制屏输出电压Uuv=220v,并打开NMCL05(A)面板右下角的电源开关。观察NMCL05(A)锯齿波触发电路中各点波形是否正确,确定其输出脉冲可调的移相范围。并调节偏移电阻RP2,使Uct=0时,=150°。2单相桥式晶闸管半控整流电路供电给电阻性负载:按图1-2接线,并短接平波电抗器L。调节电阻负载RD(可选择900电阻并联,最大电流为0.8A)至最大。(a)NMCL-31A的给定电位器RP1逆时针调到底,使Uct=0。合上主电路电源,主控制屏输出Uuv=220V。调节NMCL-31A的给定电位器RP1,使=90°,测取此时整流电路的输出电压Ud=f(t),输出电流id=f(t)以及晶闸管端电压UVT=f(t)波形,并测定交流输入电压U2、整流输出电压Ud,验证。若输出电压的波形不对称,可分别调整锯齿波触发电路中RP1,RP3电位器。(b)采用类似方法,分别测取=60°,=30°时的Ud、id、Uvt波形。3单相桥式半控整流电路供电给电阻电感性负载(a)接上续流二极管,接上平波电抗器。NMCL-31A的给定电位器RP1逆时针调到底,使Uct=0。合上主电源,主控制屏输出Uuv=220V。(b)调节Uct,使=90°,测取输出电压Ud=f(t),整流电路输出电流id=f(t)以及续流二极管电流iVD=f(t)波形,并分析三者的关系。调节电阻RD,观察id波形如何变化,注意防止过流。(c)调节Uct,使分别等于60°、90°时,测取Ud,iL,id,iVD波形。(d)断开续流二极管,观察Ud=f(t),id=f(t)。突然切断触发电路,观察失控现象并记录Ud波形。若不发生失控现象,可调节电阻Rd。七实验报告1绘出单相桥式半控整流电路供电给电阻负载,电阻电感性负载情况下,当=90°时的Ud、id、UVT、iVD等波形图并加以分析。2作出实验整流电路的输入输出特性Ud=f(Uct),触发电路特性Uct=f()及Ud/U2=f()曲线。 3分析续流二极管作用及电感量大小对负载电流的影响。八思考1 在可控整流电路中,续流二极管VD起什么作用?在什么情况下需要接入?2 能否用双踪示波器同时观察触发电路与整流电路的波形?实验三 单相桥式全控整流电路实验一实验目的1了解单相桥式全控整流电路的工作原理。2研究单相桥式全控整流电路在电阻负载、电阻电感性负载及反电势负载时的工作。3熟悉NMCL05(A)组件或NMCL36组件。二实验线路及原理参见图1-3。三实验内容1单相桥式全控整流电路供电给电阻负载。2单相桥式全控整流电路供电给电阻电感性负载。四实验设备及仪器1教学实验台主控制屏2NMCL33组件3NMCL05(A)组件或NMCL36组件4NMEL03组件5NMEL02组件或NMCL35组件6NMCL31A组件7二踪示波器8万用表五注意事项1本实验中触发可控硅的脉冲来自NMCL-05挂箱(或NMCL36组件),故NMCL-33的内部脉冲需断,以免造成误触发。2电阻RD的调节需注意。若电阻过小,会出现电流过大造成过流保护动作(熔断丝烧断,或仪表告警);若电阻过大,则可能流过可控硅的电流小于其维持电流,造成可控硅时断时续。3电感的值可根据需要选择,需防止过大的电感造成可控硅不能导通。4NMCL-05(或NMCL36)面板的锯齿波触发脉冲需导线连到NMCL-33面板,应注意连线不可接错,否则易造成损坏可控硅。同时,需要注意同步电压的相位,若出现可控硅移相范围太小(正常范围约30°180°),可尝试改变同步电压极性。5逆变变压器采用NMEL-02三相芯式变压器(或NMCL35组式变压器),原边为220V,副边为110V。6示波器的两根地线由于同外壳相连,必须注意需接等电位,否则易造成短路事故。六实验方法1将NMCL05(A)(或NMCL36)面板左上角的同步电压输入接NMCL002的U、V输出端), 触发电路选择锯齿波。2断开NMEL-02和NMCL-33的连接线,合上主电路电源,主控制屏输出电压Uuv为220V,此时锯齿波触发电路应处于工作状态。NMCL-31A的给定电位器RP1逆时针调到底,使Uct=0。调节偏移电压电位器RP2,使a=90°。断开主电源,连接NMEL-02(NMCL-35)和NMCL-33。3单相桥式全控整流电路供电给电阻负载。接上电阻负载(可采用两只900电阻并联),并调节电阻负载至最大,短接平波电抗器。合上主电路电源,调节Uct,求取在不同a角(30°、60°、90°)时整流电路的输出电压Ud=f(t),晶闸管的端电压UVT=f(t)的波形,并记录相应a时的Uct、Ud和交流输入电压U2值。若输出电压的波形不对称,可分别调整锯齿波触发电路中RP1,RP3电位器。4单相桥式全控整流电路供电给电阻电感性负载。断开平波电抗器短接线,求取在不同控制电压Uct时的输出电压Ud=f(t),负载电流id=f(t)以及晶闸管端电压UVT=f(t)波形并记录相应Uct时的Ud、U2值。注意,负载电流不能过小,否则造成可控硅时断时续,可调节负载电阻RP,但负载电流不能超过0.8A,Uct从零起调。改变电感值(L=100mH),观察a=90°,Ud=f(t)、id=f(t)的波形,并加以分析。注意,增加Uct使a前移时,若电流太大,可增加与L相串联的电阻加以限流。七实验报告1绘出单相桥式晶闸管全控整流电路供电给电阻负载情况下,当a=60°,90°时的Ud、UVT波形,并加以分析。2绘出单相桥式晶闸管全控整流电路供电给电阻电感性负载情况下,当a=90°时的Ud、id、UVT波形,并加以分析。实验四 单相桥式有源逆变电路实验一实验目的1加深理解单相桥式有源逆变的工作原理,掌握有源逆变条件。2了解产生逆变颠覆现象的原因。二实验线路及原理NMCL33的整流二极管VD1VD6组成三相不控整流桥作为逆变桥的直流电源,逆变变压器采用NMEL02芯式变压器(或NMCL35组式变压器),回路中接入电感L及限流电阻Rd。具体线路参见图1-4。三实验内容1单相桥式有源逆变电路的波形观察。2有源逆变到整流过渡过程的观察。3逆变颠覆现象的观察。四实验设备及仪表1教学实验台主控制屏2NMCL33组件3NMCL05(A)组件或NMCL36组件4NMEL03组件5NMEL02组件或NMCL35组件6NMCL31A组件7二踪示波器8万用表五注意事项1本实验中触发可控硅的脉冲来自NMCL-05挂箱,故NMCL-33(或MCL-53,以下同)的内部触发脉冲需断开,以免造成误触发。2电阻RP的调节需注意。若电阻过小,会出现电流过大造成过流保护动作(熔断丝烧断,或仪表告警);若电阻过大,则可能流过可控硅的电流小于其维持电流,造成可控硅时断时续。3电感的值可根据需要选择,需防止过大的电感造成可控硅不能导通。4NMCL-05面板的锯齿波触发脉冲需导线连到NMCL-33面板,应注意连线不可接错,否则易造成损坏可控硅。同时,需要注意同步电压的相位,若出现可控硅移相范围太小(正常范围约30°180°),可尝试改变同步电压极性。5逆变变压器采用NMEL-02三相芯式变压器(或NMCL35组式变压器),原边为220V,副边为110V。6示波器的两根地线由于同外壳相连,必须注意需接等电位,否则易造成短路事故。六实验方法1将NMCL05(A)面板左上角的同步电压输入接NMCL002的U、V输出端), 触发电路选择 “锯齿波”。将NMCL33的I组桥触发脉冲切断。2有源逆变实验有源逆变实验的主电路如图1-4,控制回路的接线可参考单相桥式全控整流电路实验(图1-3)。(a)将限流电阻RD调整至最大(约450),先断开NMEL-02(NMCL-35)和NMCL-33的连接线,参考图1-3,连接控制回路。合上主电源,调节Uuv=220V,用示波器观察锯齿波的“1”孔和“6”孔,调节偏移电位器RP2,使Uct=0时,=10°,然后调节Uct,使在30°附近。(b)按图1-4连接主回路。三相调压器逆时针调到底,合上主电源,调节主控制屏输出使Uuv=220V。用示波器观察逆变电路输出电压Ud=f(t),晶闸管的端电压UVT=f(t)波形,并记录Ud和交流输入电压U2的数值。(c)采用同样方法,绘出在分别等于60°、90°时,Ud、UVT波形。3逆变到整流过程的观察当大于90°时,晶闸管有源逆变过渡到整流状态,此时输出电压极性改变,可用示波器观察此变化过程。注意,当晶闸管工作在整流时,有可能产生比较大的电流,需要注意监视。4逆变颠覆的观察当=30°时,继续减小Uct,此时可观察到逆变输出突然变为一个正弦波,表明逆变颠覆。当关断NMCL05(A)面板的电源开关,使脉冲消失,此时,也将产生逆变颠覆。七实验报告1画出=30°、60°、90°时,Ud、UVT的波形。2分析逆变颠覆的原因,逆变颠覆后会产生什么后果?实验五 三相半波可控整流电路的研究一实验目的了解三相半波可控整流电路的工作原理,研究可控整流电路在电阻负载和电阻电感性负载时的工作。二实验线路及原理三相半波可控整流电路用三只晶闸管,与单相电路比较,输出电压脉动小,输出功率大,三相负载平衡。不足之处是晶闸管电流即变压器的二次电流在一个周期内只有1/3时间有电流流过,变压器利用率低。实验线路见图1-5。三实验内容1研究三相半波可控整流电路供电给电阻性负载时的工作。2研究三相半波可控整流电路供电给电阻电感性负载时的工作。四实验设备及仪表1教学实验台主控制屏2NMCL33组件3NMEL03组件4NMCL31A组件5二踪示波器6万用表五注意事项1整流电路与三相电源连接时,一定要注意相序。2整流电路的负载电阻不宜过小,应使Id不超过0.8A,同时负载电阻不宜过大,保证Id超过0.1A,避免晶闸管时断时续。3正确使用示波器,避免示波器的两根地线接在非等电位的端点上,造成短路事故。六实验方法1按图接线,未上主电源之前,检查晶闸管的脉冲是否正常。(1)用示波器观察NMCL-33的双脉冲观察孔,应有间隔均匀,幅度相同的双脉冲(2)检查相序,用示波器观察“1”,“2”单脉冲观察孔,“1” 脉冲超前“2” 脉冲600,则相序正确,否则,应调整输入电源。(3)用示波器观察每只晶闸管的门极,阴极,应有幅度为1V2V的脉冲。2研究三相半波可控整流电路供电给电阻性负载时的工作合上主电源,接上电阻性负载,:(a)改变控制电压Uct,观察在不同触发移相角时,可控整流电路的输出电压Ud=f(t)与输出电流波形id=f(t),并记录相应的Ud、Id、Uct值。(b)记录=90°时的Ud=f(t)及id =f(t)的波形图。(c)求取三相半波可控整流电路的输入输出特性Ud/U2=f()。(d)求取三相半波可控整流电路的负载特性Ud=f(Id)。3研究三相半波可控整流电路供电给电阻电感性负载时的工作接入NMCL331的电抗器L=700mH,可把原负载电阻Rd调小,监视电流,不宜超过0.8A(若超过0.8A,可用导线把负载电阻短路),操作方法同上。(a)观察不同移相角时的输出Ud=f(t)、id=f(t),并记录相应的Ud、Id值,记录=90°时的Ud=f(t)、id=f(t),Uvt=f(t)波形图。(b)求取整流电路的输入输出特性Ud/U2=f()。七实验报告1绘出本整流电路供电给电阻性负载,电阻电感性负载时的Ud= f(t),id= f(t)及Uvt= f(t)(在=90°情况下)波形。2根据实验数据,绘出电路负载特性Ud=f(Id),输入输出特性Ud/U2=f()。实验六 三相桥式全控整流及有源逆变电路实验一实验目的1熟悉NMCL-33组件。2熟悉三相桥式全控整流及有源逆变电路的接线及工作原理。二实验内容1三相桥式全控整流电路2三相桥式有源逆变电路3观察整流或逆变状态下,模拟电路故障现象时的波形。三实验线路及原理实验线路如图1-7所示。主电路由三相全控变流电路及作为逆变直流电源的三相不控整流桥组成。触发电路为数字集成电路,可输出经高频调制后的双窄脉冲链。三相桥式整流及有源逆变电路的工作原理可参见“电力电子技术”的有关教材。四实验设备及仪器1教学实验台主控制屏2NMCL33组件3NMEL03组件4NMCL31A组件5NMEL-02组件或NMCL35组件6二踪示波器7万用表五实验方法1未上主电源之前,检查晶闸管的脉冲是否正常。(1)用示波器观察NMCL-33的双脉冲观察孔,应有间隔均匀,相互间隔60°的幅度相同的双脉冲。(2)检查相序,用示波器观察“1”,“2”单脉冲观察孔,“1” 脉冲超前“2” 脉冲60°,则相序正确,否则,应调整输入电源。(3)用示波器观察每只晶闸管的控制极,阴极,应有幅度为1V2V的脉冲。注:将面板上的Ublf(当三相桥式全控变流电路使用I组桥晶闸管VT1VT6时)接地,将I组桥式触发脉冲的六个开关均拨到“接通”。(4)将NMCL-31A的给定器输出Ug接至NMCL-33面板的Uct端,调节偏移电压Ub,在Uct=0时,使a=150°。2三相桥式全控整流电路 按图1-7接线,AB两点断开、CD两点断开,AD连接在一起,并将RD调至最大(450W)。三相调压器逆时针调到底,合上主电源,调节主控制屏输出电压Uuv、Uvw、Uwu,从0V调至220V。调节Uct,使a在30°90°范围内,用示波器观察记录a=30°、60°、90°时,整流电压ud=f(t),晶闸管两端电压uVT=f(t)的波形,并记录相应的Ud和交流输入电压U2数值。3三相桥式有源逆变电路断开电源开关后,断开AD点的连接,分别连接AB两点和CD两点。调节Uct,使a仍为150°左右。三相调压器逆时针调到底,合上主电源,调节主控制屏输出电压Uuv、Uvw、Uwu,从0V调至220V合上电源开关。调节Uct,观察a=90°、120°、150°时, 电路中ud、uVT的波形,并记录相应的Ud、U2数值。4电路模拟故障现象观察。在整流状态时,断开某一晶闸管元件的触发脉冲开关,则该元件无触发脉冲即该支路不能导通,观察并记录此时的ud波形。六实验报告1画出电路的移相特性Ud=f(a)曲线2作出整流电路的输入输出特性Ud/U2=f()3画出三相桥式全控整流电路时,a角为30°、60°、90°时的ud、uVT波形4简单分析模拟故障现象实验七 单相交流调压电路实验一实验目的1加深理解单相交流调压电路的工作原理。2加深理解交流调压感性负载时对移相范围要求。二实验内容1单相交流调压器带电阻性负载。2单相交流调压器带电阻电感性负载。三实验线路及原理本实验采用了锯齿波移相触发器。该触发器适用于双向晶闸管或两只反并联晶闸管电路的交流相位控制,具有控制方式简单的优点。晶闸管交流调压器的主电路 由两只反向晶闸管组成,见图1-8。四实验设备及仪器1教学实验台主控制屏2NMCL33组件3NMEL03组件4NMCL31A组件5NMCL-05(A)组件或NMCL36组件6二踪示波器7万用表五注意事项在电阻电感负载时,当a<j时,若脉冲宽度不够会使负载电流出现直流分量,损坏元件。为此主电路可通过变压器降压供电,这样即可看到电流波形不对称现象,又不会损坏设备。六实验方法1单相交流调压器带电阻性负载将NMCL-33上的两只晶闸管VT1,VT4反并联而成交流电调压器,将触发器的输出脉冲端G1、K1,G3、K3分别接至主电路相应VT1和VT4的门极和阴极。接上电阻性负载(可采用两只900电阻并联),并调节电阻负载至最大。NMCL-31A的给定电位器RP1逆时针调到底,使Uct=0。调节锯齿波同步移相触发电路偏移电压电位器RP2,使a=150°。合上主电源,主控制屏输出电压为Uuv=220V。用示波器观察负载电压u=f(t),晶闸管两端电压uVT= f(t)的波形,调节Uct,观察不同a角时各波形的变化,并记录a=60°,90°,120°时的波形。2单相交流调压器接电阻电感性负载(1)在做电阻电感实验时需调节负载阻抗角的大小,因此须知道电抗器的内阻和电感量。可采用直流伏安法来测量内阻,电抗器的内阻为RL=UL/I 电抗器的电感量可用交流伏安法测量,由于电流大时对电抗器的电感量影响较大,采用自耦调压器调压多测几次取其平均值,从而可得交流阻抗。ZL=UL/I 电抗器的电感量为 这样即可求得负载阻抗角 在实验过程中,欲改变阻抗角,只需改变电阻器的数值即可。 (2)断开电源,接入电感(L=700mH)。调节Uct,使a=450。三相调压器逆时针调到底,合上主电源,调节主控制屏输出电压,使Uuv=220V。用二踪示波器同时观察负载电压u和负载电流i的波形。调节电阻R的数值(由大至小),观察在不同a角时波形的变化情况。记录a>,a=,a<三种情况下负载两端电压u和流过负载的电流i的波形。也可使阻抗角为一定值,调节a观察波形。注:调节电阻R时,需观察负载电流,不可大于0.8A。 六实验报告1整理实验中记录下的各类波形2分析电阻电感负载时,a角与j角相应关系的变化对调压器工作的影响。实验八 采用自关断器件的单相交流调压电路研究一实验目的1掌握采用自关断器件的单相交流调压电路的工作原理、特点、波形分析与使用场合。2熟悉PWM专用集成电路SG3525的组成、功能、工作原理与使用方法。二实验内容1PWM专用集成电路SG3525性能测试2控制电路相序与驱动波形测试3带与不带电感时负载与mos管两端电压波形测试4在不同占空比条件下,负载端电压、负载端谐波与输入电流的位移因数测试。三实验系统组成及工作原理随着自关断器件的迅速发展,采用晶闸管移相控制的交流调压设备,已逐渐被采用自关断器件(GTR、MOSFET、IGBT等)的交流斩波调压所代替,与移相控制相比,斩波调压具有下列优点:(1) 谐波幅值小,且最低次谐波频率高,故可采用小容量滤波元件;(2) 功率因数高,经滤波后,功率因数接近于1。(3) 对其他用电设备的干扰小。因此,斩波调压是一种很有发展前途的调压方法,可用于马达调速、调温、调光等设备。本实验系统以调光为例,进行斩波调压研究。斩波调压的主回路由MOSFET及其反并联的二极管组成双向全控电子斩波开关。当MOS管分别由脉宽调制信号控制其通断时,则负载电阻RL上的电压波形如图24b所示(输出端不带滤波环节时),显然,负载上的电压有效值随脉宽信号的占空比而变,当输出端带有滤波环节时的负载端电压波形如图24c所示。脉宽调制信号由专用集成芯片SG3525产生,有关SG3525的内部结构、功能、工作原理与使用方法等可参阅双闭环可逆直流脉宽调速系统实验。控制系统中由变压器T、比较器和或非门等组成同步控制电路以确保交流电源的2端为正时,MOS管VT1导通;而当交流电源的1端为正时,MOS管VT2导通。四实验设备和仪器1NMCL-22实验挂箱 2万用表 3双踪示波器五实验方法1SG3525性能测试先按下开关S1。(1)锯齿波周期与幅值测量(分开关S2、S3、S4合上与断开多种情况)。测量“1”端。(2)输出最大与最小占空比测量。测量“2”端。2控制电路相序与驱动波形测试将“UPW”的2端与控制电路的4端相连。将电位器RP左旋到底,按下开关S1、S6、S7,用双踪示波器观察并记录下列各点波形:(1)控制电路的1、2与地端间波形,应仔细测量该波形是否对称互补;(2)控制电路的3、5与地端间波形;(3)主电路的4与5及6与5端间波形;3不带电感时负载与mos管两端电压波形测试将主电路的3与4短接,将upw的电位器Rp右旋到大致中间的位置,测试并记录负与mos管两端电压波形4带电感时负载与mos管两端电压波形测试将主电路的3与4不短接,将upw的电位器rp右旋到大致中间的位置,测试并记录负载与mos管两端电压波形5不同占空比D时的负载端电压测试实验中,将电位器rp从左至右旋转4-5个位置,分别观察并记录SG3525的输出2端脉冲的占空比、负载端电压大小与波形6不同载波频率时的滤波效果比较使电感接入电路,在s2、s3、s4合上与断开多种情况下,观察并记录负载两端波形。7不同占空比d时的负载端谐波大小的测试分别观察并记录Rp左旋与右旋到底时的负载端波形,从而判断出占空比d大小对负载端谐波大小的影响。8输入电流的位移因数测试(1)将主电路的3、4两端用导线短接,即不接入电感(2)在不同占空比条件下,用双踪示波器同时观察并记录2与1端和2与6端间波形。五思考题1 当主电路接纯电阻负载(即将电感短路)时,可见负载电压波形存在死区,其产生的原因是什么?2 当主电路接电感性负载时,在电压的过零点会出现一尖峰脉冲,且其幅值随占空比的增大而增大。试分析其产生的原因以及抑制的方法。实验九 直流斩波电路的性能研究一实验目的熟悉降压斩波电路(Buck Chopper)和升压斩波电路(Boost Chopper)的工作原理,掌握这两种基本斩波电路的工作状态及波形情况。二实验内容1PWM专用集成电路SG3525芯片的调试。2降压斩波电路的波形观察及电压测试。3升压斩波电路的波形观察及电压测试。三实验设备及仪器1电力电子教学实验台主控制屏。2NMCL-16组件。3NMEL-03电阻箱 (900/0.41A)。4万用表。5双踪示波器6直流安培表。四实验方法1SG3525的调试。原理框图见图26。将扭子开关S1打向“直流斩波”侧,S2电源开关打向“ON”,将“3”端和“4”端用导线短接,用示波器观察“1”端输出电压波形应为锯齿波,并记录其波形的频率和幅值。扭子开关S2扳向“OFF”,用导线分别连接“5”、“6”、“9”,用示波器观察“5”端波形,并记录其波形、频率、幅度,调节“脉冲宽度调节”电位器,记录其最大占空比和最小占空比。Dmax=Dmin=2实验接线图见图27。(1)切断NMCL-16主电源,分别将“主电源2”的“1”端和“直流斩波电路”的“1”端相连,“主电源2”的“2”端和“直流斩波电路”的“2”端相连,将“PWM波形发生”的“7”、“8”端分别和直流斩波电路VT1的G1S1 端相连,“直流斩波电路”的“4”、“5”端串联NMEL-03电阻箱 (将两组900/0.41A的电阻并联起来,顺时针旋转调至阻值最大约450),和直流安培表(将量程切换到2A挡)。(2)检查接线正确后,接通控制电路和主电路的电源(注意:先接通控制电路电源后接通主电路电源 ),改变脉冲占空比,每改变一次,分别观察PWM信号的波形,MOSFET的栅源电压波形,输出电压、u0波形,输出电流i0的波形,记录PWM信号占空比D,ui、u0的平均值Ui和U0。(3)改变负载R的值(注意:负载电流不能超过1A),重复上述内容2。(4)切断主电路电源,断开“主电路2”和“降压斩波电路”的连接,断开“PWM波形发生”与VT1的连接,分别将“直流斩波电路”的“6”和“主电路2”的“1”相连,“直流斩波电路”的“7”和“主电路2”的“2”端相连,将VT2的G2S2分别接至“PWM波形发生”的“7”和“8”端,直流斩波电路的“10”、“11” 端,分别串联NMEL-03电阻箱(两组分别并联,然后串联在一起顺时针旋转调至阻值最大约900)和直流安培表(将量程切换到2A挡)。检查接线正确后,接通主电路和控制电路的电源。改变脉冲占空比D,每改变一次,分别:观察PWM信号的波形,MOSFET的栅源电压波形,输出电压、u0波形,输出电流i0的波形,记录PWM信号占空比D,ui、u0的平均值Ui和U0。(5)改变负载R的值(注意:负载电流不能超过1A),重复上述内容4。(6)实验完成后,断开主电路电源,拆除所有导线。五注意事项:(1)“主电路电源2”的实验输出电压为15V,输出电流为1A,当改变负载电路时,注意R值不可过小,否则电流太大,有可能烧毁电源内部的熔断丝。(2)实验过程当中先加控制信号,后加“主电路电源2”。(3)做升压实验时,注意“PWM波形发生器”的“S1”一定要打在“直流斩波”,如果打在“半桥电源”极易烧毁“主电路电源2” 内部的熔断丝。六实验报告1分析PWM波形发生的原理2记录在某一占空比D下,降压斩波电路中,MOSFET的栅源电压波形,输出电压u0波形,输出电流i0的波形,并绘制降压斩波电路的Ui/Uo-D曲线,与理论分析结果进行比较,并讨论产生差异的原因。实验十 单相交直交变频电路的性能研究一实验目的熟悉单相交直交变频电路的组成,重点熟悉其中的单相桥式PWM逆变电路中元器件的作用,工作原理,对单相交直交变频电路在电阻负载、电阻电感负载时的工作情况及其波形作全面分析,并研究工作频率对电路工作波形的影响。二实验内容1测量SPWM波形产生过程中的各点波形。2观察变频电路输出在不同的负载下的波形。三实验设备及仪器1电力电子及电气传动主控制屏。2NMCL-16组件。3电阻、电感元件(NMEL-03、700mH电感)。4双踪示波器。5万用表。四实验原理单相交直交变频电路的主电路如图28所示。本实验中主电路中间直流电压ud由交流电整流而得,而逆变部分别采用单相桥式PWM逆变电路。逆变电路中功率器件采用600V8A的IGBT单管(含反向二极管,型号为ITH08C06),IGBT的驱动电路采用美国国际整流器公司生产的大规模MOSFET和IGBT专用驱动集成电路1R2110,控制电路如图29所示,以单片集成函数发生器ICL8038为核心组成,生成两路PWM信号,分别用于控制VT1、VT4和VT2、VT3两对IGBT。ICL8038仅需很小的外部元件就可以正常工作,用于发生正弦波、三角波、方波等,频率范围0.001到500kHz。五实验方法1SPWM波形的观察(1)观察正弦波发生电路输出的正弦信号Ur波形(“2”端与“地”端),改变正弦波频率调节电位器,测试其频率可调范围。(2)观察三角形载波Uc的波形(“1”端与“地”端),测出其频率,并观察Uc和U2的对应关系:(3)观察经过三角波和正弦波比较后得到的SPWM波形(“3”端与“地”端),并比较“3”端和“4”端的相位关系。(4)观察对VT1、VT2进行控制的SPWM信号(“5”端与“地”端)和对VT3、VT4进行控制的SPWM信号(“6”端与“地”端),仔细观察“5”端信号和“6”端防号之间的互锁延迟时间。2驱动信号观察在主电路不接通电源情况下,S3扭子开关打向“OFF”,分别将“SPWM波形发生”的G1、E1、G2、E2、G3、E3、G4和“单相交直交变频电路”的对应端相连。经检查接线正确后,S3扭子开关打向“ON”,对比VTI和VT2的驱动信号,VT3和VT4的驱动信号,仔细观察同一相上、下两管驱动信号的波形,幅值以及互锁延迟时间。3S3扭子开关打向“OFF”,分别将“主电源2”的输出端“1”和“单相交直交变频电路”的“1”端相连, “主电源2”的输出端“2”和“单相交直交变频电路”的“2”端相连,将“单相交直交变频电路”的“4”、“5”端分别串联MEL-03电阻箱 (将一组900/0.41A并联,然后顺时针旋转调至阻值最大约450) 和直流安培表(将量程切换到2A挡)。将经检查无误后,S3扭子开关打向“ON”,合上主电源(调节负载电阻阻值使输出负载电压波形达到最佳值,电阻负载阻值在90360时波形最好)。4当负载为电阻时,观察负载电压的波形,记录其波形、幅值、频率。在正弦波Ur的频率可调范围内,改变Ur的频率多组,记录相应的负载电压、波形、幅值和频率。5当负载为电阻电感时,观察负载电压和负载电流的波形。六注意事项1“输出端”不允许开路,同时最大电流不允许超过“1A”。2注意电源要使用“主电源2”的“15V”电压其他同“直流斩波”电路相同。七实验报告1绘制完整的实验电路原理图。2电阻负载时,列出数据和波形,并进行讨论分析。3电阻电感负载时,列出数据和波形,并进行讨论及分析。4分析说明实验电路中的PWM控制是采用同步调制还是异步调制。5为使输出波形尽可能的接近正弦波,可以采取什么措施。6分析正弦波与三角波之间不同的载波比情况下的负载波形,理解改变载波比对输出功率管和输出波形的影响。实验十一 单相交直交变频电路(调速)一实验目的熟悉单相交直交变频电路的组成,重点熟悉其中的单相桥式PWM逆变电路中元器件的作用,工作原理,对单相交直交变频电路驱动电机时的工作情况及其波形作全面分析,并研究正弦波的频率和幅值及三角波载波频率与电机机械特性的关系二实验内容1测量SPWM波形产生过程中的各点波形2观察变频电路驱动电机时的输出波形3观察电机工作情况三实验设备和仪器1电力电子及电气传动主控制屏2NMCL-22组件3NMEL-03组件4双踪示波器5万用表四实验方法1SPWM波形的观察按下左下方的开关S5(1)观察"SPWM波形发生"电路输出的正弦信号Ur波形(2端与地端),改变正弦波频率调节电位器,测试其频率可调范围。(2)观察三角形载波Uc的波形(1端与地端),测出其频率,并观察Uc和Ur的对应关系。(3)观察经过三角波和正弦波比较后得到的SPWM(3端与地端)。2逻辑延时时间的测试将"SPWM波形发生"电路的3端与"DLD"的1端相连,用双踪示波器同时观察"DLD"的1和2端波形,并记录延时时间Td.。3同一桥臂上下管子驱动信号死区时间测试分别将“隔离驱动”的G和主回路的G'相连,用双踪示波器分别同时测量G1、E1和 G2、E2, G3、E3和 G4、E2的死区时间。4不同负载时波形的观察按图2-14接线。先断开主电源和开关S1。将三相调压器的U、V、W接主电路的相应处,将主电路的1、3端相连,(1)当负载为电阻时(6、7端接一电阻),观察负载电压的波形,记录其波形、幅值、频率。在正弦波Ur的频率可调范围内,改变Ur的频率多组,记录相应的负载电压、波形、幅值和频率。(2)当负载为电阻电感时(6、8端相联,9端和7端接一电阻),观察负载电压和负载电流的波形。 31
展开阅读全文
相关资源
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 大学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!