高考数学复习:第五章 :第三节 等比数列及其前n项和突破热点题型

上传人:仙*** 文档编号:40858635 上传时间:2021-11-17 格式:DOC 页数:5 大小:196.50KB
返回 下载 相关 举报
高考数学复习:第五章 :第三节 等比数列及其前n项和突破热点题型_第1页
第1页 / 共5页
高考数学复习:第五章 :第三节 等比数列及其前n项和突破热点题型_第2页
第2页 / 共5页
高考数学复习:第五章 :第三节 等比数列及其前n项和突破热点题型_第3页
第3页 / 共5页
点击查看更多>>
资源描述
+2019年数学高考教学资料+第三节等比数列及其前n项和 来源:考点一等比数列的判定与证明 例1已知数列an的前n项和为Sn,a11,Sn14an2(nN*),若bnan12an,求证:bn是等比数列自主解答an2Sn2Sn14an124an24an14an.2,S2a1a24a12,a25.b1a22a13.数列bn是首项为3,公比为2的等比数列【互动探究】保持本例条件不变,若cn,证明:cn是等比数列证明:由例题知,bn32n1an12an,3.数列是首项为2,公差为3的等差数列2(n1)33n1,an(3n1)2n2,cn2n2.2.数列cn为等比数列【方法规律】等比数列的判定方法证明一个数列为等比数列常用定义法与等比中项法,其他方法只用于选择、填空题中的判定;若证明某数列不是等比数列,则只要证明存在连续三项不成等比数列即可已知等比数列an的公比为q,记bnam(n1)1am(n1)2am(n1)m,cnam(n1)1am(n1)2am(n1)m(m,nN*),则以下结论一定正确的是()A数列bn为等差数列,公差为qmB数列bn为等比数列,公比为q2mC数列cn为等比数列,公比为qm2D数列cn为等比数列,公比为qmm解析:选Cbnam(n1)1(1qq2qm1),qm,故数列bn为等比数列,公比为qm,选项A、B均错误;cnaq12(m1),m(qm)mqm2,故数列cn为等比数列,公比为qm2,D错误,故选C.高频考点考点二 等比数列的基本运算来源:1等比数列的基本运算是高考的常考内容,题型既有选择、填空题,也有解答题,难度适中,属中低档题2高考对等比数列的基本运算的考查常有以下几个命题角度:(1)化基本量求通项;(2)化基本量求特定项;(3)化基本量求公比;(4)化基本量求和例2(1)(2013新课标全国卷)等比数列an的前n项和为Sn,已知S3a210a1,a59,则a1()A. B C. D(2)(2012浙江高考)设公比为q(q0)的等比数列an的前n项和为Sn.若S23a22,S43a42,则q_.(3)(2013湖北高考)已知Sn是等比数列an的前n项和,S4,S2,S3成等差数列,且a2a3a418.求数列an的通项公式;是否存在正整数n,使得Sn2 013?若存在,求出符合条件的所有n的集合;若不存在,说明理由自主解答(1)由已知条件及S3a1a2a3,得a39a1,设数列an的公比为q,则q29.所以a59a1q481a1,得a1.(2)由S23a22,S43a42作差,可得a3a43a43a2,即2a4a33a20,所以2q2q30,解得q或q1(舍)(3)设数列an的公比为q,则a10,q0.由题意得即解得故数列an的通项公式为an3(2)n1.由有Sn1(2)n.来源:若存在n,使得Sn2 013,则1(2)n2 013,即(2)n2 012.当n为偶数时,(2)n0,上式不成立;当n为奇数时,(2)n2n2 012,即2n2 012,则n11.综上,存在符合条件的正整数n,且所有这样的n的集合为n|n2k1,kN,k5答案(1)C(2)等比数列基本量运算问题的常见类型及解题策略(1)化基本量求通项求等比数列的两个基本元素a1和q,通项便可求出,或利用知三求二,用方程求解(2)化基本量求特定项利用通项公式或者等比数列的性质求解(3)化基本量求公比利用等比数列的定义和性质,建立方程组求解(4)化基本量求和直接将基本量代入前n项和公式求解或利用等比数列的性质求解1(2013新课标全国卷)设首项为1,公比的等比数列an的前n项和为Sn,则()ASn2an1 BSn3an2CSn43an DSn32an解析:选D因为a11,公比q,所以ann1,Sn332n132an.2(2014宁波模拟)已知等比数列an为递增数列,且aa10,2(anan2)5an1,则数列an的通项公式an_.解析:设数列an的首项为a1,公比为q,aa10,2(anan2)5an1,由得a1q,由知q2或q,又数列an为递增数列,a1q2,从而an2n.答案:2n3等比数列an的前n项和为Sn,已知S1,S3,S2成等差数列(1)求an的公比q;(2)若a1a33,求Sn.解:(1)S1,S3,S2成等差数列,a1(a1a1q)2(a1a1qa1q2)由于a10,故2q2q0,又q0,从而q.(2)由已知可得a1a123,故a14,从而Sn.考点三等比数列的性质 例3(1)已知等比数列an中,a1a2a340,a4a5a620,则前9项之和等于()A50 B70 C80 D90(2)已知an为等比数列,a4a72,a5a68,则a1a10()A7 B5 C5 D7来源:自主解答(1)S3,S6S3,S9S6成等比数列,S3(S9S6)(S6S3)2,又S340,S6402060,40(S960)202,故S970.(2)由已知得解得或当a44,a72时,易得a18,a101,从而a1a107;来源:当a42,a74时,易得a108,a11,从而a1a107.答案(1)B(2)D【方法规律】等比数列常见性质的应用等比数列性质的应用可以分为三类:(1)通项公式的变形;(2)等比中项的变形;(3)前n项和公式的变形根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口1记等比数列an的前n项积为Tn(nN*),已知am1am12am0,且T2m1128,则m的值为()A4 B7 C10 D12解析:选A因为an是等比数列,所以am1am1a,又由am1am12am0,可知am2.由等比数列的性质可知前(2m1)项积T2m1a,即22m1128,故m4.2在等比数列an中,若a1a2a3a41,a13a14a15a168,则a41a42a43a44_.解析:法一:a1a2a3a4a1a1qa1q2a1q3aq61,a13a14a15a16a1q12a1q13a1q14a1q15aq548,由,得q488q162,又a41a42a43a44a1q40a1q41a1q42a1q43aq166aq6q160(aq6)(q16)1012101 024.法二:由性质可知,依次4项的积为等比数列,设公比为q,T1a1a2a3a41,T4a13a14a168,T4T1q31q38,即q2.T11a41a42a43a44T1q102101 024.答案:1 024课堂归纳通法领悟2个注意点应用等比数列的公比应注意的问题(1)由an1qan(q0),并不能断言an为等比数列,还要验证a10.(2)在应用等比数列的前n项和公式时,必须注意对q1和q1分类讨论,防止因忽略q1这一特殊情况而导致错误4种方法等比数列的判定方法(1)定义法:若q(q为非零常数)或q(q为非零常数且n2),则an是等比数列;(2)等比中项法:在数列an中,an0且aanan2(nN*),则数列an是等比数列;(3)通项公式法:若数列通项公式可写成ancqn(c,q均是不为0的常数,nN*),则an是等比数列;(4)前n项和公式法:若数列an的前n项和Snkqnk(k为常数且k0,q0,1),则an是等比数列注意:前两种方法也可用来证明一个数列为等比数列高考数学复习精品高考数学复习精品
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 工作计划


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!