气工程及其自动化毕业论文某10KV变电所设计

上传人:1777****777 文档编号:39234124 上传时间:2021-11-10 格式:DOC 页数:37 大小:638.50KB
返回 下载 相关 举报
气工程及其自动化毕业论文某10KV变电所设计_第1页
第1页 / 共37页
气工程及其自动化毕业论文某10KV变电所设计_第2页
第2页 / 共37页
气工程及其自动化毕业论文某10KV变电所设计_第3页
第3页 / 共37页
点击查看更多>>
资源描述
毕 业 设 计(论 文)设计(论文)题目: 某10KV变电所设计 学 院 名 称: 电子与信息工程学院 专 业: 电气工程及其自动化 班 级: 电气071 姓 名: 王凌 学 号 09 指 导 教 师: 顾时明 职 称 工程师 定稿日期:2011年 5月20日236某10KV变电所设计摘要本设计根据翻石渡地下车库项目实际供电需求,根据国家电气相关规范、标准以及翻石渡地下车库建设规划及负荷现状。根据翻石渡地下车库工程特点,规模和发展规划结合近期建设与远期发展的关系,做到远近结合,适当考虑扩建的可能性和发展的可能性。对相应的10kv变电所进行设计,主要包括10kv变电所设计,负荷计算,仪器设备效验和选用以及变电所的建设。实现安全、可靠地供电,达到优质、节能供电的目的。关键词:变电所,短路电流,负荷计算,系统主接线CONSUMERS 10KV SUBSTATION DESIGNABSTRACTThis design topic is turn stone cross underground garage consumers 10kv substation design, is according to the graduation design specification requirements finish. Design basis is turn stone cross underground garage construction planning and load the status quo. According to turn stone cross underground garage features of the project, the scale and development planning, dealing with the recent construction and forward development relationship, achieves the near-far according to recent primarily, consider appropriately expanded the possibility and the possibility of the development, design consumers 10kv substation. With over stone crossing the development and construction of the underground garage, the original substation already cannot satisfy the needs, to improve the quality of power supply, improve the power supply reliability, and according to the development plan and load the status quo, design consumers 10kv substation. Key Words: Substation, short-circuit current, the system master wiring 目录第一章 绪论.4第二章 负荷分析计算6第三章 主接线设计.7第四章 短路计算.10 第五章 电气设备的选择及校验.11第六章 变电所的建设.39第七章 小结.42第八章 参考文献.43第九章 附录.44第十章 致谢.45第一章 绪论随着国民经济的发展,各类民用建筑以多层建筑为主,配电距离在变长,配电功率在变大,负荷密度在增加,10kv配电网络承担着重大的供配电任务。而变电所在供配电网络中起着接受、变换和分配电能的作用,所以,变电所在供配电网络中处于举足轻重的地位。 在10kv变电所设计中,主要完成以下任务:主接线方案的设计与论证;负荷计算及无功功率补偿;短路电流计算;高、低压侧配电系统设计;电气设备的选择与校验;变电所形式的确定及其内部电气平面布置设计;对电力变压器的继电保护;防雷和接地等等。 目前,在10kv变电所的设计中,普遍采用金属封闭铠装开关柜设备,将变压器一、二次开关设备全部合为一体。而开关设备的发展是变电所、电力系统发展的先驱。真空开关、SF6断路器、重合器、分段器、自动配电开关、新型熔断器的出现,为变电所向小型化、智能化、免维护、易施工方向发展创造了良好的条件。随着科学技术的发展,变电所综合自动化系统运用的日益广泛,逐步融入了IT技术,借助计算机技术和网络通信技术,对配电网进行在线和离线的智能化监控管理。做到保护、运行、管理的自动化。随着微机监控系统和配电自动化技术的应用,变电所内逐步实现了无人值守。这就大大减少了危险场所人为事故发生率,增强了供配电系统的可靠性和稳定性。在先进技术不断发展的今天,变电所综合自动化系统以其系统化、标准化和面向未来的概念正逐步取代繁琐而复杂的传统控制保护系统。所以综合自动化是变电所发展的总方向。考虑到人工操作与智能化操作的接合,在变电所内做微机保护设计,主要从微机保护的原理,硬、软件组成,微机保护的特点和微机保护可靠性提高的措施等方面做出叙述。第二章 负荷计算及分析本次设计工程为鄞州区姜山镇翻石渡村经济合作社新村三期地下室,建筑面积28738平方,内设汽车库,自行车库及设备用房等。其上分别为住宅及小区绿化,地下室共分23个防火分区。本设计包括以下电气系统:220/380v配电系统;照明系统;建筑物防雷,接地系统及安全措施;本工程地下室连为一体,其汽车停车数量超过300辆,属一类汽车库,按一级负荷要求进行供电。负荷分类及容量:一级负荷:消防风机,消防水泵,应急照明,防火卷帘等。本地下室部分负荷约418KW。二级负荷:地下室照明,生活泵,潜水泵等。负荷约140KW。其余为三级负荷。供电电源: 本工程电源引自地下室专用变配电室。低压配电系统采用220/380V放射式与树干式相结合的方式,对于单台容量较大的负荷或重要负荷采用放射式供电;对于照明及一般负荷采用树干式与放射式相结合的供电方式。供电范围按防火分区划分,分别从变配电室引来低压电缆对本区域进行供电。计量:本公共部分可由建设单位根据实际需要设置计量表记。消防专用设备:消防专用设备的过载保护只报警,不跳闸。变配电所:在地下室设置2台630KVA的专变。专变部分采用高供高计,二路电源供电,互为热备用,在高压进线柜后设置计量柜。公变高压采用环网柜,功率因数在低压侧采用并联电容器组集中补偿,要求自动补偿到0.9以上。专变高压采用高压真空开关柜,功率因数在低压侧采用并联电容器组集中补偿,要求自动补偿到0.9以上。低压配电系统从专用变引出电缆放射式供电到各幢楼的电梯及消防设备。消防设备采用专用的供电回路,在变电所处要有明显的标志,电缆采用耐火电缆。照明:照明分普通照明与应急照明。普通照明主要采用节能灯。应急照明在各疏散楼梯间、前室、消控室、配电房、防排烟机房等处设置,采用消防电源与自带电池的应急灯相结合。在小高层的疏散走道和安全出口等处设置应急疏散照明,采用专用的疏散指示标志灯。考虑室外及景观照明电源。通过本次设计,要达到的目的有:巩固和提高对所学的专业理论知识的认识,并在毕业设计的实践过程中得到灵活应用;学习和掌握变电所电气部分设计的基本方法,树立正确的设计思想;培养独立分析和解决实际问题的工作能力及实际工程设计的基本技能;培养查阅、使用国家规范、设计手册及其他参考资料的能力;为今后从事电力工程设计、建设、运行及管理工作打下必要的坚实基础。有功计算负荷:PC= KiKdPe P C为有功功率 Ki为需要系数 Kd为同时系数 Pe为设备容量 无功计算负荷:QC= PC tg QC为无功功率 tg为功率因数的正切值 视在功率计算负荷:SC= PC/cosSC为视在功率 cos为功率因数自行车库用电:有功功率Pe=15*7=105w PC= KiKdPe=0.8*0.8*105=67.2w无功功率QC= PC tg=67.2*0.48=32.256w视在功率SC= PC/cos=67.2/0.9=75w其他设备计算同上计算表如下:用电设备台数容量需要系数costg计算负荷无功功率视在功率自行车库用电7150.80.90.4867.232.25675汽车应急用电5100.80.90.483215.3636生活汞1150.60.80.757.25.49消火栓汞1550.60.80.7526.419.833喷淋汞1370.60.80.7517.7613.3222.2排烟风机818.50.80.80.7594.7271.04118.4车库电源5200.80.90.486430.7271.1电梯常用电源7120.50.51.7333.658.2867.2电梯备用电源7120.50.51.7333.658.2867.2总计42678376.48304.426499.4同时系数取0.8 根据SC= PC/cos=499.4KVA,选择SCB8-630/10变压器两台。功率因数tg=(Qc1+Qc2)/(Pc1+Pc2) cos=arc tg= 0.734 因为功率因数要达到0.9以上。所以功率补偿如下:Pc=376.48KW Qc=304.426KVA 需补偿的容量为“Qcc=Pc(tgarccos0.734-taarccos0.9)=160kvar查电气设备实用手册选取电容器型号:BWF 0.4-25-1,额定容量Qr为 25kvar。需装设的电容器个数为:N= QCC/Qr=6.4 考虑到三相平衡,应装设9个,每相 3 个。第三章 主接线设计 第一节 电气主接线的基本知识 电气主接线是发电厂和变电所电气设计的首要部分,也是构成电力系统的主节。 主接线是指由各种开关电器、电力变压器、母线、电力电缆或导线、移相电容器、避雷器等电气设备依一定的次序相连接的接受和分配电能的电路。而用规定的电气设备图形符号和文字符号并按照工作顺序排列,详细地表示电气设备或成套装置 全部基本组成和连接关系的单线接线图,称为主接线电路图。 主接线可分为有母线接线和无母线接线两类。有母线接线分为单母线接线和双母线接线;无母线接线分为单元式接线、桥式接线和多角形接线。而在中、低压供配电系统中主要采用单母线接线、单元式接线和桥式接线。 主接线的选择直接影响到电力系统运行的可靠性,灵活性,并对电器选择,配电装置布置,继电保护,自动装置和控制方式的拟定都有决定性的关系。因此,主接线的正确、合理设计,必须综合处理各方面的因素,经过技术、经济比较后方可确定。第二节 电气主接线的基本要求我国变电所设计的技术规程规定:变电所的主接线应根据变电所在电力系统中的地位,回路数,设备特点及负荷性质等条件确定,且应满足运行可靠,简单灵活,操作方便和节省投资等要求。 电气主接线的基本要求: 1、可靠性: (1)研究可靠性应注意的问题: A、应重视网内外长期运行的实践经验及其可靠性的运行分析。 B、应包括一次部分和相应组成的二次部分在运行中可靠性的综合。 C、在很大程度上取决于设备的可靠程度。 D、考虑待设计发电厂,变电所在电力系统中的地位和作用。 (2)具体要求: A、断路器检修时,不宜影响对系统的供电。 B、断路器或引线检修及引线故障时,尽量减少停远回路和停远时间,并保证对一级负荷及全部及大部分二级负荷的供电。 C、尽量避免变电所全停的可能性。 D、大机组,超高压电气主接线应满足可靠性的特殊要求。2、灵活性:主接线应满足在调度、检修及扩建时的灵活性。 (1)调度时,应可以灵活地投入和切除发电机,变压器和线路,调配电源和负荷,满足系统在事故运行方式,检修运行方式及特殊运行方式下的系统调度要求。 (2)检修时,可以方便地停运断路器,母线及其继电保护设备进行安全检修而不致影响电力网和对用户的供电。 (3)扩建时,可以容易地从初期接线过渡到最终接线,并且对一次和二次部分的改建工作量最少。3、经济性:主接线在满足可靠性,灵活性要求的前提下做到经济合理。 (1)投资省 A、主接线要求简单,以节省断路器、隔离开关、电流互感器和电压互感器、避雷器等一次设备。 B、要使继电保护和二次回路不过于复杂,以节省二次设备和控制电缆。 C、要能限制短路电流,以便选择价廉的电器设备和轻型电器。 D、如能满足系统安全运行及继电保护要求,110KV及以下终端和分支变电所可用简单接线方式。 (2)占地面积小,主接线设计要为配电装置创造条件,尽量使占地面积减少。 (3)电能损失小,经济合理地选择各种电气,减少电能损失。 (4)具有未来发展和扩建的可能性。第三节 主接线设计 一、主接线的设计依据: 1、发电厂、变电所在电力系统中的地位和作用。 电力系统中的变电所有:系统枢纽变,地区重要变电所和一般变电所三种类型,一般变电所多为终端和分支变电所,电压为110KV及以下。 2、发电厂、变电所的分期和最终建设规模。 变电所根据510年电力系统发展规划进行设计,一般装设两台主变压器,终端或分支变电所如只有一个电源时,可只装设一台主变压器。 3、负荷大小和重要性 (1)对于一级负荷必须有两个独立电源供电,且当任何一个电源失去后,能保证对全部一级负荷不间断供电。 (2)对于二级负荷一般要有两个独立电源供电,且当任何一个电源失去后,能保证全部或大部分二级负荷的供电。 (3)对于三级负荷,一般只需一个电源供电。 4、系统备用容量大小 装有两台及以上主变的变电所,当其中一台事故断开时,其余主变的容量,应保证该变电所70%的全部负荷,在经过过负荷能力后的允许时间内,应保证用户的一、二级负荷供电,系统备用容量的大小将会影响运行方式的变化。在主接线设计时应充分考虑这一因素。5、系统专业对电气主接线提供的具体资料 (1)出线的电压等级、回路数、每回路输送容量和导线截面。 (2)主变压器台数,容量和型号;变压器各侧的额定电压,阻抗等。 (3)系统的短路容量或归算电抗值。 (4)变压器中性点的接地方式及接地点的选择。 (5)初期和最终变电所与系统连接方式,变电所的地理位置等。(见附图01)、第四章 短路计算依据上述的功率及条件,选择的变压器为型号为SCB8-630/10,Dyn11。短路电流计算见下例:110KV/10KV变电站处有一台变压器,型号为S9-40000/110,为三相双绕组无励磁调压变压器,联结组别为Ynd11,短路阻抗为uk%=10.5。到10KV/0.4KV变电所的距离为4km,电缆型号为YJV-8.7/15KV-3x95,末端变压器选用SCB8-630/10,Dyn11接线,短路阻抗为uk%=4.5。分别计算末端变压器高低压侧的三相短路电流。2.2 用标幺值进行计算,取基准容量Sj=100MVA。0.263X2=X*L=0.0874=0.3487.14310KV处的基准电流为:5.505(kA)380V处的基准电流为:144.509(kA)短路电流和短路容量分别为:5.505/0.263=21(kA)Sd1=Up1Id1=10.521=382(MVA)5.505/(0.263+0.348)=9(kA)Sd2=Up1Id2=10.59=164(MVA)144.509/(0.263+0.348+7.143)=18.64(kA)Sd3=Up2Id3=0.418.64=12.9(MVA)第五章 电气设备的选择及校验第一节 电气设备的相关介绍1.1.1断路器 断路器是控制电流通断的设备,主要用于对线路及设备的保护,当电路中出现过载、短路、欠压等故障时,能迅速切断电源,保护线路、负载及相关设备的安全。断路器类型 断路器按结构型式,可分为塑壳式和框架式两大类。作为进线开关,一般选择框架式断路器,框架断路器具有模块化结构、智能化过电流保护功能、选择性保护精度高、供电可靠性强,零飞弧距离等特点,同时带有开放式通讯接口,可进行遥测、遥控,能够满足控制中心和自动化系统的要求。但是框架式断路器有体积大、价格高、接触防护较差等弱点,所以作为进线断路器,它并不是最佳选择。塑壳式断路器有体积小,安装紧凑、外形美观、价格低、接触防护好等特点,以往它没有成为进线开关的首选,主要受到其容量小,短路分断能力低,选择性和短时耐受能力差这几方面因素的限制,但是随着技术的发展和新产品的推出,这些问题已经获得了不同程度的改进。断路器根据保护类型有A类和B类之分:A类为非选择型,B类为选择型。所谓选择型是指断路器具有过载长延时、短路短延时和短路瞬时的三段保护特性。仅有过载长延时、短路瞬时的二段保护,它们是属于非选择型的A类断路器。选择性保护。当F点短路时,只有靠近F点的QF2断路器动作,而上方位的QF1断路器不动作,这就是选择性保护。如果QF2和QF1都是A类断路器,则F点发生短路,短路电流值达一定值时,QF1、QF2同时动作,QF1断路器回路及其下的支路全部停电,就不是选择性保护了。能够实现选择性保护的原因是,QF1为B类断路器,它具有短路短延时性能,当F点短路时,短路电流流过QF2支路,也流过QF1回路,QF2的瞬时动作脱扣器动作,因QF1的短延时,QF1在0.02s内不会动作。在QF2动作切断故障线路时,整个系统就恢复了正常。可见,如果要达到选择性保护的要求,上一级的断路器应选用具有三段保护的B型断路器。1.1.2断路器参数设定断路器一般具有两个反映断路器短路分断能力的参数:额定极限短路分断能力Icu与额定运行短路分断能力Ics。额定极限短路分断能力是指在一定的试验参数条件下,经一定的试验程序,能够接通、分断的短路电流,经此通断后,不再继续承载其额定电流的分断能力。其试验程序为OtCO。具体方法是:把线路的电流调整到预期的短路电流值,而试验按钮未合,被试断路器处于合闸位置,按下试验按钮,断路器通过50kA短路电流,断路器立即开断(O),断路器应完好,且能再合闸。经间歇时间t后,此时线路仍处于热备状态,断路器再进行一次接通(C)和紧接着的开断。此程序即为CO。断路器能完全分断,则其极限短路分断能力合格(试检后要验证脱扣特性和工频耐压)。断路器的额定运行短路分断能力(Ics)是指在一定的试验参数(电压、短路电流和功率因数)条件下,经一定的试验程序,能够接通、分断的短路电流,经此通断后,还要继续承载其额定电流的分断能力,OtCOtCO。它比Icu的试验程序多了一次CO,经过试验,断路器能完全分断、熄灭电弧,就认定它的额定运行短路分断能力合格。额定运行短路分断能力Ics的试验条件极为苛刻(一次分断、二次通断),由于试后它还要继续承载额定电流,因此它不单要验证脱扣特性、工频耐压,还要验证温升。我国国家标准GB14048.2规定,Ics可以是极限短路分断能力Icu数值的25%、50%、75%和100%。因此可以看出,额定运行短路分断能力是一种比额定极限短路分断电流小的分断电流值,Ics是Icu的一个百分数。一般来说,具有过载长延时、短路短延时和短路瞬动三段保护功能的断路器,能实现选择性保护,大多数主干线(包括变压器的出线端)都采用它作主保护开关。不具备短路短延时功能的断路器(仅有过载长延时和短路瞬动二段保护),不能作选择性保护,它们只能使用于支路。具有三段保护的断路器,偏重于它的运行短路分断能力值,而使用于分支线路的断路器,应确保它有足够的极限短路分断能力值。无论是哪种断路器,虽然都具备Icu和Ics这两个重要的技术指标。但是,作为支线上使用的断路器,可以仅满足额定极限短路分断能力即可。现在出现的较普遍的偏颇是宁取大,不取正合适,认为取大保险。但取得过大,会造成不必要的浪费(同类型断路器,其高分断型,比普通型的价格要贵出许多)。因此支线上的断路器没有必要一味追求它的运行短路分断能力指标。而对于干线上使用的断路器,不仅要满足额定极限短路分断能力Icu的要求,同时也应该满足额定运行短路分断能力Ics的要求,如果仅以额定极限短路分断能力Icu来衡量其分断能力合格与否,将会给用户带来不安全的隐患。对于选择性B类断路器,还具有的一个特性参数是短时耐受电流(Icw),是指在一定的电压、短路电流、功率因数下,保持0.05秒、0.1秒、0.25秒、0.5秒或1秒而断路器不允许脱扣的能力,Icw是在短延时脱扣时,对断路器的电动稳定性和热稳定性的考核指标,通常Icw的最小值是:当In2500A时,它为12In或5kA,而In2500A时,它为30kA。断路器的额定电流使用两个概念:断路器的额定电流In和断路器壳架等级额定电流Inm。当我们通常所说的“断路器额定电流”,是指“断路器壳架等级额定电流”而不是“脱扣器额定电流”。多数低压断路器供应商所提供的产品资料中,也一般不提“断路器壳架等级额定电流”这一复杂的说法,而只给出“断路器额定电流”这一参数,其实就是“断路器额定电流”作为“断路器壳架等级额定电流”的一种简称。“断路器壳架等级额定电流”是标明断路器的框架通流能力的参数,主要由主触头的通流能力决定,它也决定了所能安装的脱扣器的最大额定电流值。断路器的脱扣器型式有过电流脱扣器、欠电压脱扣器、分励脱扣器等。过电流脱扣器还可分为过载脱扣器和短路(电磁)脱扣器,并有长延时、短延时、瞬时之分。过电流脱扣器最为常用。标明过电流脱扣器的电流有以下几个参数:脱扣器额定电流In,指脱扣器能长期通过的最大电流。长延时过载脱扣器动作电流整定值Ir,固定式脱扣器其Ir=In,可调式脱扣器其Ir为脱扣器额定电流1n的倍数,如Ir=0.411n。短延时电磁脱扣器动作电流整定值Im,为过载脱扣器动作电流整定值Ir的倍数,倍数固定或可调,如Im=210Ir。对不可调式可在其中选择一适当的整定值。瞬时电磁脱扣器动作电流额定值Im,为脱扣器额定电流In的倍数,倍数固定或可调,如Im=1.511In。对不可调式可在其中选择一适当的整定值。1.1.3断路器的选用断路器的选择,首先根据具体使用条件选择类别,再按电路的额定电流及对保护的要求来确定具体参数。例如当额定电流在630A以下,短路电流不太大,首选塑壳式断路器。额定电流比较大,可以选用框架式断路器,当然也可以用那些性能好的塑壳式断路器代替。对短路电流特别大的支路要注意断路器的限流能力能否满足要求。有漏电保护要求时,断路器须有此功能。选择断路器的一个重要原则是断路器的短路分断能力线路的预期短路电流,这个断路器的短路分断能力通常是指它的极限短路分断能力。无论A类或B类断路器,它们的额定运行短路分断能力Ics绝大多数是小于它的额定极限短路分断能力Icu的。即脱扣器能长期通过的电流,也就是脱扣器额定电流。但是,按线路预期短路电流的计算来选择断路器的分断能力,精确的线路预期短路电流的计算是一项相当耗时耗力的工作。因此有一些误差不很大而可以被接受的简捷计算方法,比如对于10/0.4KV电压等级的变压器,可以考虑高压侧的短路容量为无穷大。或变压器的阻抗电压UK表示变压器副边短接(路),当副边达到其额定电流时,原边电压为其额定电压的百分值。因此当原边电压为额定电压时,副边电流就是它的预期短路电流。这些计算均是变压器出线端短路时的电流值,这是最严重的短路事故。如果短路点离变压器有一定的距离,则需考虑线路阻抗,因此短路电流将减小。用户在设计时,应计算安装处(线路)的额定电流和该处可能出现的最大短路电流。并按以下原则选择断路器:断路器的额定电流In线路的额定电流IL断路器的额定短路分断能力线路的预期短路电流,因此,在选择断路器上,不必把余量放得过大,以免造成浪费。绝大部分框架式断路器,都具有过载长延时、短路短延时和短路瞬动的三段保护功能,能实现选择性保护,因此大多数主干线都采用它作主保护开关,而塑壳式断路器一般不具备短路短延时功能,不能作选择性保护,它们只能使用于支路。由于使用(适用)的情况不同,具有三段保护的万能式断路器,偏重于它的运行短路分断能力值,而大量使用于分支线塑壳断路器确保它有足够的极限短路能力值。这里的含义是:主干线切除故障电流后更换断路器要仔细,主干线停电将会影响相对多的用户,所以发生短路故障时要求两个CO(先闭合再断开操作),而且要求继续承载一段时间的额定电流,而在支路,经过极限短路电流的分断和再次的合、分后,已完成其任务,它不再承载额定电流,可以更换新的。对于低压进线断路器设计选型中应采用哪一个参数,没有明确的规定,各种手册也没有明确的说法。大多数手册指出:断路器的额定短路通断能力等于或大于线路中可能出现的最大短路电流,一般按有效值计算。具体是极限分断能力还是运行分断能力没有说明,但是从下面两方面考虑,宜选用额定运行短路分断能力Ics:从可靠性方面考虑。采用运行分断能力选择断路器,在断路器开短路电流后,还可以保证断路器承受它的额定电流,减少断路器出故障的可能性,从而可以提高断路器运行的可靠性。从可行性方面考虑。对于新型断路器,运行分断能力一般都较大,都能满足短路电流的要求。交流接触器广泛用作电力的开断和控制电路。 交流接触器利用主接点来开闭电路,用辅助接点来执行控制指令。 主接点一般只有常开接点,而辅助接点常有两对具有常开和常闭功能的接点,小型的接触器也经常作为中间继电器配合主电路使用。 从而起到远程控制或弱电控制强电的功能. 交流接触器的接点,由银钨合金制成,具有良好的导电性和耐高温烧蚀性。交流接触器又分永磁式交流接触器和电磁式交流接触器. 中间继电器就是个继电器,不要因为有“中间”俩字而感到奇怪,它的原理和交流接触器一样,都是由固定铁芯、动铁芯、弹簧、动触点、静触点、线圈、接线端子和外壳组成。线圈通电,动铁芯在电磁力作用下动作吸合,带动动触点动作,使常闭触点分开,常开触点闭合;线圈断电,动铁芯在弹簧的作用下带动动触点复位。用定时器对继电器的线圈进行控制,就是时间继电器。 常见的中间继电器也有主触头和辅助触头,主触头一般有四组,辅助触头有两组。与接触器相比,它的主触头较小,承载能力低,主要用于传递控制信号。 一般的电路常分成主电路和控制电路两部分,继电器主要用于控制电路,接触器主要用于主电路;通过继电器可实现用一路控制信号控制另一路或几路信号的功能,完成启动、停止、联动等控制,主要控制对象是接触器;接触器的触头比较大,承载能力强,通过它来实现弱电到强电的控制,控制对象是用电器。热过载继电器就是用在过载上,过载了,就会让相应的触点断开线路.1.2.1电流互感器 电流互感器:将大电流变成小电流的互感器。在正常使用情况下其比差和角差都应在允许范围内。电流互感器原理是依据电磁感应原理的。电流互感器是由闭合的铁心和绕组组成。它的一次绕组匝数很少,串在需要测量的电流的线路中,因此它经常有线路的全部电流流过,二次绕组匝数比较多,串接在测量仪表和保护回路中,电流互感器在工作时,它的2次回路始终是闭合的,因此测量仪表和保护回路串联线圈的阻抗很小,电流互感器的工作状态接近短路。 1.2.2测量用电流互感器在测量交变电流的大电流时,为便于二次仪表测量需要转换为比较统一的电流(我国规定电流互感器的二次额定为5A或1A),另外线路上的电压都比较高如直接测量是非常危险的。电流互感器就起到变流和电气隔离作用。 它是电力系统中测量仪表、继电保护等二次设备获取电气一次回路电流信息的传感器,电流互感器将高电流按比例转换成低电流,电流互感器一次侧接在一次系统,二次侧接测量仪表、继电保护等。 正常工作时互感器二次侧处于近似短路状态,输出电压很低。在运行中如果二次绕组开路或一次绕组流过异常电流(如雷电流、谐振过电流、电容充电电流、电感启动电流等),都会在二次侧产生数千伏甚至上万伏的过电压。这不仅给二次系统绝缘造成危害,还会使互感器过激而烧损,甚至危及运行人员的生命安全。 1次侧只有1到几匝,导线截面积大,串入被测电路。2次侧匝数多,导线细,与阻抗较小的仪表(电流表/功率表的电流线圈)构成闭路。 电流互感器的运行情况相当于2次侧短路的变压器,忽略励磁电流,安匝数相等I1N1=I2N2.电流互感器一次绕组电流I1与二次绕组I2的电流比,叫实际电流比I1/I2=N2/N1=k励磁电流是误差的主要根源。 测量用电流互感器的精度等级0.2/0.5/1/3,1表示变比误差不超过1%,另外还有0.2S和0.5S级。 保护用电流互感器的精度等级5P/10P ,10P标示复合误差不超过10%。 1.2.3互感器原理 在供电用电的线路中电流电压大大小小相差悬殊从几安到几万安都有。为便于二次仪表测量需要转换为比较统一的电流,另外线路上的电压都比较高如直接测量是非常危险的。电流互感器就起到变流和电气隔离作用。 较早前,显示仪表大部分是指针式的电流电压表,所以电流互感器的二次电流大多数是安培级的(如5A等)。现在的电量测量大多数字化,而计算机的采样的信号一般为毫安级(0-5V、4-20mA等)。微型电流互感器二次电流为毫安级,主要起大互感器与采样之间的桥梁作用。 微型电流互感器也有人称之为“仪用电流互感器”。(“仪用电流互感器”有一层含义是在实验室使用的多电流比精密电流互感器,一般用于扩大仪表量程。) 微型电流互感器与变压器类似也是根据电磁感应原理工作,变压器变换的是电压而微型电流互感器变换的是电流罢了。如图绕组N1接被测电流,称为一次绕组(或原边绕组、初级绕组);绕组N2接测量仪表,称为二次绕组(或副边绕组、次级绕组)。 微型电流互感器一次绕组电流I1与二次绕组I2的电流比,叫实际电流比K。微型电流互感器在额定工作电流下工作时的电流比叫电流互感器额定电流比,用Kn表示。 Kn=I1n/I2n 微型电流互感器大致可分为两类,测量用电流互感器和保护用电流互感器。 1.2.4电流互感器接线方式 额定变比和误差互感器的额定变比KN指电压互感器的额定电压比和电流互感器的额定电流比。前者定义为原边绕组额定电压U1N与副边绕组额定电压 U2N之比;后者则为额定电流I1N与I2N之比。即 KNU1N/U2N (对电压互感器) KNI1N/I2N (对电流互感器) 电压(或电流)互感器原边电压(或电流)在一定范围内变动时,一般规定为0.851.15U1N(或10120%I1N),副边电压(或电流)应按比例变化,而且原、副边电压(或电流)应该同相位。但由于互感器存在内阻抗、励磁电流和损耗等因素而使比值及相位出现误差,分别称为比差和角差。 比差为经折算后的二次电压(或二次电流)与一次电压(或一次电流)量值大小之差对后者之比,即fU 为电压互感器的比差,fI 为电流互感器的比差。当KNU2U1(或KNI2I1)时,比差为正,反之为负。 对没有采取补偿措施的电压互感器,比差为负,角差一般为正值,比差的绝对值和角差均随电压的增大而减小;铁心饱和时,比差与角差均随电压的增大而增大.对于没有采取补偿措施的电流互感器,比差为负值,角差为正值,比差的绝对值和角差均随电流增大而减小。 采用补偿的办法可以减小互感器的误差。一般通过在互感器上加绕附加绕组或增添附加铁心,以及接入相应的电阻、电感、电容元件来补偿。常用的补偿法有匝数补偿、分数匝补偿、小铁心补偿、并联电容补偿等。 电流互感器的作用是可以把数值较大的一次电流通过一定的变比转换为数值较小的二次电流,用来进行保护、测量等用途。如变比为400/5的电流互感器,可以把实际为400A的电流转变为5A的电流。1.2.5工作原理电流互感器起到变流和电气隔离作用。便于二次仪表测量需要转换为比较统一的电流,避免直接测量 线路的危险。电流互感器是升压(降流)变压器,它是电力系统中测量仪表、继电保护等二次设备获取电气一次回路电流信息的传感器,电流互感器将高电流按比例转换成低电流,电流互感器一次侧接在一次系统,二次侧接测量仪表、继电保护等。1.3.1电压互感器电压互感器:将高电压变成低电压的互感器。在正常使用情况下,其比差和角差都应在允许范围内。电压互感器。压互感器是一个带铁心的变压器。它主要由一、二次线圈、铁心和绝缘组成。当在一次绕组上施加一个电压U1时,在铁心中就产生一个磁通,根据电磁感应定律,则在二次绕组中就产生一个二次电压U2。改变一次或二次绕组的匝数,可以产生不同的一次电压与二次电压比,这就可组成不同比的电压互感器。电压互感器将高电压按比例转换成低电压,即100V,电压互感器一次侧接在一次系统,二次侧接测量仪表、继电保护等;主要是电磁式的(电容式电压互感器应用广泛),另有非电磁式的,如电子式、光电式。施工、安装要点1.3.2工作原理其工作原理与变压器相同,基本结构也是铁心和原、副绕组。特点是容量很小且比较恒定,正常运行时接近于空载状态.电压互感器本身的阻抗很小,一旦副边发生短路,电流将急剧增长而烧毁线圈。为此,电压互感器的原边接有熔断器,副边可靠接地,以免原、副边绝缘损毁时,副边出现对地高电位而造成人身和设备事故。 测量用电压互感器一般都做成单相双线圈结构,其原边电压为被测电(如电力系统的线电压),可以单相使用,也可以用两台接成V-V形作三相使用。实验室用的电压互感器往往是原边多抽头的,以适应测量不同电压的需要。供保护接地用电压互感器还带有一个第三线圈,称三线圈电压互感器。三相的第三线圈接成开口三角形,开口三角形的两引出端与接地保护继电器的电压线圈联接。 正常运行时,电力系统的三相电压对称,第三线圈上的三相感应电动势之和为零。一旦发生单相接地时,中性点出现位移,开口三角的端子间就会出现零序电压使继电器动作,从而对电力系统起保护作用。 线圈出现零序电压则相应的铁心中就会出现零序磁通。为此,这种三相电压互感器采用旁轭式铁心(10KV及以下时)或采用三台单相电压互感器。对于这种互感器,第三线圈的准确度要求不高,但要求有一定的过励磁特性(即当原边电压增加时,铁心中的磁通密度也增加相应倍数而不会损坏)。1.3.3基本作用电压互感器的作用是:把高电压按比例关系变换成100V或更低等级的标准二次电压,供保护、计量、仪表装置使用。同时,使用电压互感器可以将高电压与电气工作人员隔离。电压互感器虽然也是按照电磁感应原理工作的设备,但它的电磁结构关系与电流互感器相比正好相反。电压互感器二次回路是高阻抗回路,二次电流的大小由回路的阻抗决定。当二次负载阻抗减小时,二次电流增大,使得一次电流自动增大一个分量来满足一、二次侧之间的电磁平衡关系。可以说,电压互感器是一个被限定结构和使用形式的特殊变压器。简单的说就是“检测元件”。 1.3.4接线方式电压互感器的接线方式很多,常见的有以下几种: (1)用一台单相电压互感器来测量某一相对地电压或相间电压的接线式 (2)用两台单相互感器接成不完全星形,也称VV接线,用来测量各相间电压,但不能测相对地电压,广泛应用在20KV以下中性点不接地或经消弧线圈接地的电网中。 (3) 用三台单相三绕组电压互感器构成YN,yn,d0或YN,y,d0的接线形式,广泛应用于3220KV系统中,其二次绕组用于测量相间电压和相对地电压,辅助二次绕组接成开口三角形,供接入交流电网绝缘监视仪表和继电器用。用一台三相五柱式电压互感器代替上述三个单相三绕组电压互感器构成的接线,除铁芯外,其形式与图3基本相同,一般只用于315KV系统。 (4) 电容式电压互感器接线形式。 在中性点不接地或经消弧线圈接地的系统中,为了测量相对地电压,PT一次绕组必须接成星形接地的方式。在360KV电网中,通常采用三只单相三绕组电压互感器或者一只三相五柱式电压互感器的接线形式。必须指出,不能用三相三柱式电压互感器做这种测量。当系统发生单相接地短路时,在互感器的三相中将有零序电流通过,产生大小相等、相位相同的零序磁通。在三相三柱式互感器中,零序磁通只能通过磁阻很大的气隙和铁外壳形成闭合磁路,零序电流很大,使互感器绕组过热甚至损坏设备。而在三相五柱式电压互感器中,零序磁通可通过两侧的铁芯构成回路,磁阻较小,所以零序电流值不大,对互感器不造成损害。 1.4.1隔离开关隔离开关隔离开关是高压开关电器中使用最多的一种电器,顾名思义,是在电路中起隔离作用的它本身的工作原理及结构比较简单,但是由于使用量大,工作可靠性要求高,对变电所、电厂的设计、建立和安全运行的影响均较大。刀闸的主要特点是无灭弧能力,只能在没有负荷电流的情况下分、合电路。1.4.2基本介绍隔离开关(disconnector)即在分位置时,触头间有符合规定要求的绝缘距离和明显的断开标志;在合位置时,能承载正常回路条件下的电流及在规定时间内异常条件(例如短路)下的电流的开关设备。我们所说的隔离开关,一般指的是高压隔离开关,即额定电压在1kv及其以上的隔离开关,通常简称为隔离开关,是高压开关电器中使用最多的一种电器,它本身的工作原理及结构比较简单,但是由于使用量大,工作可靠性要求高,对变电所、电厂的设计、建立和安全运行的影响均较大。刀闸的主要特点是无灭弧能力,只能在没有负荷电流的情况下分、合电路。 1.4.3主要作用1)分闸后,建立可靠的绝缘间隙,将需要检修的设备或线路与电源用一个明显断开点隔开,以保证检修人员和设备的安全。 2)根据运行需要,换接线路。 3)可用来分、合线路中的小电流,如套管、母线、连接头、短电缆的充电电流,开关均压电容的电容电流,双母线换接时的环流以及电压互感器的励磁电流等。 4)根据不同结构类型的具体情况,可用来分、合一定容量变压器的空载励磁电流。 高压隔离开关按其安装方式的不同,可分为户外高压隔离开关与户内高压隔离开关。户外高压隔离开关指能承受风、雨、雪、污秽、凝露、冰及浓霜等作用,适于安装在露台使用的高压隔离开关。按其绝缘支柱结构的不同可分为单柱式隔离开关(single-column disconnector)、双柱式隔离开关(double-column disconnector)、三柱式隔离开关(three-column disconnector)。其中单柱式刀闸在架空母线下面直接将垂直空间用作断口的电气绝缘,因此,具有的明显优点,就是节约占地面积,减少引接导线,同时分合闸状态特别清晰。在超高压输电情况下,变电所采用单柱式刀闸后,节约占地面积的效果更为显著。 在低压设备中主要适用于民宅、建筑等低压终端配电系统。主要功能:带负荷分断和接通线路 1.4.4隔离开关的选择隔离开关配置在主接线上,保证了线路及设备检修时形成明显的断口与带电部分隔离,由于隔离开关没有灭弧装置及开断能力低,所以操作隔离开关时,必须遵守倒闸操作顺序,即送电时,首先合上母线侧隔离开关,其次合上线路侧隔离开关,最后合上断路器,停电则于上述相反。 第二节 电气设备选择及校验电气设备的选择是变电站电气设计的主要内容之一,正确地选择设备是使电气主接线和配电装置达到安全、经济运行的重要条件。在进行设备选择时,应根据工程实际情况,在保证安全可靠的前提下,积极而稳妥地采用新技术,并注意节约投资,选择合适的电气设备。电气设备要可靠地工作必须按正常条件进行选择,并按短路状态校验其热稳定和动稳定.电器选择的一般要求:1)满足正常情况下短路、过电压、检修。 2)按当地环境条件校核。 3)力求技术先进和经济合理。 4)与整个工程建设标准协调一致。 5)同类设备尽量减少品种。 6)选用新产品应具有可靠试验数据,并经正式鉴定合格。为了保证高压电器的可靠运行,高压电器应满足下列条件: (1)、按正常工作条件包括电压、电流、频率、开断电流等选择; (2)、按短路条件包括动稳定、热稳定和持续时间校验; (3)、按环境条件如温度、湿度、海拔、环境、介质状态等选择; (4)、按各类高压电器的不同特点,如断路器的操作性能、互感器的二次侧负荷和准确等级、熔断器的上下级选择性配合等进行选择。2.1.1母线的选择与校验 2.1.2 母线简介: 母线的作用是将发电机和变压器生成的电能集中,然后再分配给用户。 母线的选择应符合如下条件: 1)、母线应满足正常负荷下的长期运行条件; 2)、应能承受故障时故障电流,尤其是短路电流的短时作用; 3)、为保证电源质量,必须限制线路上的电压损失,以满足线路末端的电压偏差要求,即应满足线路电压损失的要求; 4)、应满足机械强度要求; 5)、应考虑线路的经济运行.2.1.3母线选型 户内硬母线优先采用铝、其次为铜,截面分为矩形、槽型、管型,布置方式有水平垂直布置及平放、立放之分。 户外软母线优先采用钢芯铝绞线。 电缆:包括线芯材料,电缆绝缘型式、密封层、保护层。 2.1.4母线选择条件分析 1)中压线路 由于距离系统较近,短路电流大且故障切除时间较长,但其上负荷电流较小,母线选择的主要矛盾是能否承受短时电流的作用,既热稳定问题。因此,一般用热稳定条件确定母线截面,在以其他条件进行校验。 2)低压线路 由于低压线路负荷电流相对较大,短路电流较小且故障切除时间短,母线选择的主要矛盾是能否承受工作电流,故一般以载流量条件选择母线截面,用其他条件校验。二、母线选择: 1、高压侧母线的选择:以热稳定条件选择母线截面 满足热稳定要求的导线或电缆的最小截面应为:AI/C式中,C热稳定校验系数 tim假想时间 (注:值由工厂供电表5-4计算得,=0.15s)高压侧:Ic=Sc/Ur=28.8A ,AI/C=9KA/171=136mm2 因此选择截面积为150 mm2 ,载流量为227A的YJV22-8.7/15KV。电缆选择方法同母线选择,不再赘述。 10KV侧选择:YJV22-8.7/15-350型交联聚乙烯绝缘电力电缆; 0.4KV侧选择:TMY-3(806)+(406)2.2.1一次侧电气设备选择与校验 2.2.2 开关电器的选择: 开关电器的选择原则具有互通性,即不仅要保证开关电器正常时的可靠工作,还应保证系统故障时,能承受短路时的故障电流的作用,同时尚应满足不同的开关电器对电流分断能力的要求,因此,开关电器的选择应符合下列条件: 满足正常工作条件 满足工作电压要求 即:Ur = UN Um Uw 式中 Um 开关电器最高工作电压; Uw开关电器装设处的最高工作电压; Ur 开关电器额定电压; UN系统的额定电压。 满足工作电流要求 即 Ir Ic满足工作电流要求 即 Ir Ic 式中 Ir开关电器额定电流 Ic开关电器装设处的计算电流 满足工作环境要求 选择电气设备时,应考虑其适合运行环境条件要求,如:温度、风速、污秽、海拔、地震、烈度等。 2.2.3 满足短路故障时的动、热稳定条件 满足动稳定要求 imaxish , 或 ImaxIsh , 式中 imax开关电器的极限通过电流峰值 Imax开关电器的极限通过电流有效值; ish开关电器安装处的三相短路冲击电流; Ish开关电器安装处的三相短路冲击电流有效值2).满足热稳定要求 I2ttI2tim 式中 It开关电器的t秒热稳定电流有效值; I开关电器安装处的三相短路电流有效值; tim假想时间。 2.2.4 满足开关电器分断能力的要求 断路器 断路器应能分断最大短路电流 IbrI(3)K 式中 Ibr 断路器的额定分断电流; I(3)K断路器安装处的三相短路电流有效值。 负荷开关 负荷开关应满足最大负荷电流 IbrIc 式中 Ibr 负荷开关的额定分断电流; Ic 负荷开关安装处的最大负荷电流。2、互感器的选择: 互感器发主要作用是:实现隔离作用;降低仪表成本;实现仪表标准化。 满足工作电压要求 即:Ur = UN Um Uw式中 Um 互感器最高工作电压; Uw互感器装设处的最高工作电压; Ur 互感器额定电压; UN系统的额定电压。满足工作电流要求 应该一次、二次侧分别考虑 一次侧额定电流Ir1:即 Ir1 Ic 式中 Ir1互感器一次额定电流 ;Ir1=(1.251.5)Ic Ic互感器装设处的计算电流 二次侧额定电流Ir2 : Ir2=5A 准确度等级:已知电流互感器的准确度与一次侧电流大小和二次侧负荷大小有关。通常测量仪表用的互感器(含电压互感器和电流互感器),应具有0.5或1级的准确度;电费计量用的互感器应具有0.5级的准确度;监视用的互感器应具有1级的准确度;继电保护用的互感器应具有B级或D级的准确度
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸设计 > 任务书类


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!