第二章 变化率与导数 同步练习(一)

上传人:灯火****19 文档编号:29043177 上传时间:2021-09-24 格式:DOC 页数:7 大小:261.50KB
返回 下载 相关 举报
第二章 变化率与导数 同步练习(一)_第1页
第1页 / 共7页
第二章 变化率与导数 同步练习(一)_第2页
第2页 / 共7页
第二章 变化率与导数 同步练习(一)_第3页
第3页 / 共7页
点击查看更多>>
资源描述
第二章 变化率与导数 同步练习(一)1. 某地某天上午9:20的气温为23.40,下午1:30的气温为15.90,则在这段时间内气温变化率为(/min) ( ) A. B. C. D. 2. ( )A. B. C. D. 3. 若曲线的一条切线与直线垂直,则的方程为 A BC D4. 曲线在点处的切线方程为( )A. B. C. D. 5. 曲线过点的切线方程是( )A. B. C. D. 6. 已知,则( ) A. B. C. D. 7. 设分别表示正弦函数在附近的平均变化率,则( ) A. B. C. D. 8. 函数的导数是( )A. B. C. D. 9. 过点(1,0)作抛物线的切线,则其中一条切线为( )A. B. C. D. 10. 函数的导数为( )A. B. C. D. 11. 曲线过点的切线方程是_。12. 曲线与在交点处切线的夹角是_。13. 求导:(1),则; (2),则。14. 函数的导数是_。15. 设是二次函数,方程有两个相等的实根,且,求的表达式。16. 已知函数的图像都过点,且在点处有公共切线,求的表达式。17. 设曲线在点的切线为,在点的切线为,求。18. 设函数,已知是奇函数,求、的值。19. 已知曲线,求上斜率最小的切线方程。参考答案1. B2. B3. A4. C5. D6. B7. C8. D9. D 解析:,设切点坐标为,则切线的斜率为,且,于是切线方程为,因为点在切线上,可解得或,代入可验证D正确。10. C11. ;12. 。联立方程得,得交点,而,由夹角公式得。13.(1) ;(2) 。14. 。15. 。解析:设,则 解得,所以。16. 。解析:由题意知,得。17. 解析:由列式求得。18. ,。从而是一个奇函数,所以得,由奇函数定义得。19. ,所以最小切线斜率为,当时取到。进而可得切点,得切线方程为:。
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 中学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!