资源描述
毕 业 设 计中文题目三通管的注塑模设计英文题目Design of the injection mould for three tube 系 别: 系 别:光电与机电工程系年级专业:2009级 机械设计制造及其自动化姓 名: 名:杨娟妹 学 号: 号:092012140指导教师:许艳华职 称:助教闽南理工学院教务处制20 13 年06 月 日 毕业设计(论文)诚信声明书本人郑重声明:在毕业设计(论文)工作中严格遵守学校有关规定,恪守学术规范;我所提交的毕业设计(论文)是本人在 指导教师的指导下独立研究、撰写的成果,设计(论文)中所引用他人的文字、研究成果,均已在设计(论文)中加以说明;在本人的毕业设计(论文)中未剽窃、抄袭他人的学术观点、思想和成果,未篡改实验数据。本设计(论文)和资料若有不实之处,本人愿承担一切相关责任。学生签名: 年 月 日三通管注塑模具设计【摘 要】:三通管作为一种连接件在日常生活中应用广泛。本文主要介绍了三通管注塑模具的设计过程。本设计通过对塑件的工艺分析,确定其主要成型工艺参数,设计了三通管注塑模具中的各个系统,如浇注系统、导向与定位机构、侧向分型和抽芯机构、脱模机构、分型面、冷却系统及排气系统等,并对所选用的注塑机参数进行了校核,最后绘制出模具的装配总图,完成本文的编写。该注塑模具为双分型面结构,一模一腔,利用推杆将塑件脱出,结构合理,运行可靠。整个设计过程不仅使用了传统的设计方法,还运用了CAD、PRO/E等技术,大大提高了设计的效率。本次设计能加强对注塑模具成型原理的理解,同时锻炼了注塑模具设计和制造能力。 【关键词】:三通管 ,注塑模具 ,侧抽芯 Three-way Pipe Injection Mold Design Abstract:The three-way pipe as a connection in daily life is used widely. This paper introduces the process of the three-way pipe injection mold design. Through to the analysis of the technology of plastic parts, determine its main molding process parameters, the design of injection mould three-way pipe each of the system, such as gating system, orientation and the position of the institutions, side parting and core-pulling mechanism, ejection mechanism, the parting surface, cooling systems and exhaust slot. And checked the selected injection molding machine parameters, finally draw mold assembly drawing, completes the preparation. This injection mold is two joint surfaces structure, dying structure adopted one module one cavity, used the side core-pulling mechanism of a roller type slide,using the push rod plastic parts prolapse, it is a reasonable structure, reliable operation. The whole design process not only using traditional design method, still use of the CAD, PRO / E and other technology greatly improving the design efficiency. The design of injection mould can strengthen the understanding of forming principle, while exercising the injection molding design and manufacturing ability. Key words:The three-way pipe injection mold side core-pulling 目录第一章 引言61.1塑料注射模具简介61.1.1 概述61.1.2 注射模具基本简介61.1.3 注射成型的地位61.2 国内外模具的现状及发展趋势情况71.2.1我国塑料模具工业的发展现状71.2.2国际塑料模具工业的发展趋势8第二章 塑料的工艺性分析102.1塑件的原材料分析102.2塑料件的结构、尺寸精度及表面质量分析112.3 塑件形状分析13第三章 注塑工艺设计143.1工艺参数的计算143.1.1塑件的体积和质量的计算143.1.2注塑机的选择143.2 塑件注塑成型工艺参数16第四章 模具结构方案的确定174.1分型面的选择,型腔的数目和排列方式174.1.1分型面的选择174.1.2型腔的设计184.2成型零件结构设计184.2.1凹模结构设计194.2.2型芯设计204.3成型零件的底版与侧壁厚度尺寸的确定214.4浇注系统的设计224.4.1主流道的设计234.4.2分流道的设计244.4.3浇口的设计264.4.4冷料井的设计274.4.5排气系统的设计284.5导向与定位机构294.5.1导向机构的功用294.5.2导向机构的设计294.5.3 导套的设计304.6脱模机构的设计314.6.1推杆的位置布置334.6.2脱模机构的复位344.7侧抽芯机构设计344.7.1抽芯距 S抽354.7.2确定斜导柱倾角354.7.3确定斜导柱的尺寸364.8滑块与导滑槽的设计364.8.1滑块设计364.8.2滑槽设计374.8.3滑块的导化滑形式374.8.4滑块的定位装置384.9楔紧块设计38第五章 模架的设计395.1塑料注射模架结构395.2标准模架的选用395.3定位环415.4支撑柱41设计总结43致谢44参考文献45第一章 引言1.1塑料注射模具简介1.1.1 概述模具工业是国民经济的基础工业,被称为“工业之母”。在第二十一世纪的模具制造行业的基本特征是高度集成化和智能化的,灵活的,和网络,提高产品质量和生产效率的追求的目标,缩短设计和制造周期,降低生产成本,以最大限度地提高应变能力的模具制造,以满足用户的需求。近年来,中国的模具工业得到了快速的发展。1.1.2 注射模具基本简介 注射成型也称为注塑成型,其基本原理就是利用塑料的可挤压性与可模塑性,首先将松散的粒状或粉状成型物料从注射机的料斗送入高温的机筒内加热熔融塑化,使之成为粘流态熔体,然后在柱塞或螺杆的高压推动下,以很大的流速通过机筒前端的喷嘴注射进入温度较低的闭合模具中,经过一段保压冷却定型时间后,开启模具便可以从模腔中脱出具有一定形状和尺寸的塑料制品。它与挤出和压延成型方法相比,注射成型可以用来生产空间几何形状非常复杂的塑料制品,而挤出和压延则主要用来成型截面尺寸一定长度连续的二维塑料制品。将注射成型与压缩和压注成型相比,它又具有应用面大、成型周期短、生产效率高、模具工作条件可以得到改善,以及制品精度高和生产条件比较好、生产操作容易实现机械化等多方面的优势。在中空吹塑成型中,注射成型还常常被用来生产吹塑所用的型坯。1.1.3 注射成型的地位注射成型在整个塑料制品生产行业占有非常重要的地位,目前,除少数几种塑料外,几乎所有的塑料品种都可以采用注射成形。据统计,通过注塑工艺所得到的制品大约占了所有塑料制品总产量的30,而全世界每年所需要生产的注射模其数量就约占了所有塑料成型模具数量的50。早期的注射成型方法主要用于生产热塑性塑料制品,随着塑料工业的迅速发展以及塑料制品的应用范围不断扩大,目前的注射成形方法已经推广应用到热固性塑料制品和一些塑料复合材料制品的生产中。例如,日本的酚醛(热固性塑料)制品生产过去基本上依靠压缩和压注方法生产,但目前已经有70被注射成型所取代。注射成型方法不仅广泛应用于通用塑料制品生产,而且就工程塑料而言,它也是一种最为重要的成型方法。据统计,在当前的工程塑料制品中,80以上都要采用注射成型的方法生产。1.2 国内外模具的现状及发展趋势情况1.2.1我国塑料模具工业的发展现状 80年代以来,在国家产业政策和与之配套的一系列国家经济政策的支持和引导下,我国模具工业发展迅速,年均增速均为13%,1999年我国模具工业产值为245亿, 2003年模具进出口统计中,我国模具的出口总额为2.52亿美元,我国模具的出口总额3亿美元,进口额则达到13亿多美元,在进口模具中的塑料模具占到50%左右。可以看出,在塑料模具方面,我国与国外产品还存在较大差距。 在引进的塑料模具中,以科技含量较高的模具居多,如高精度模具、大型模具。热流道模具、气辅及高压注射成型模具等。现代塑料制品对表面光洁度、成型时间都提高了更高的要求,因而也推动了塑料模具的发展。以电视机塑料外壳模具为例。其精度已由以前的0.050.1mm提高到0.0050.01mm ,制造周期也由8个月缩短到了2个月,并且使用寿命也由过去可制10万20万件制品延长到了可60万件制品。从电视机外壳塑料模具的发展可以看到,高精密、长寿命、短周期、低成本是模具的发展方向。目前我国使用覆盖率和使用量最大的模具标准件为冷冲模架、注塑模架和推杆管这三类产品。以注塑模架为例,目前全国总产值有20多亿元,按照需求,国内约需注塑模架30多亿元,但国内市场还没有达到规模,其主要原因是模具厂的旧观念,一个小的比例较高的注塑模具,外包。不要重复生产应该买一个标准化,延长了模具的生产周期,而且也不利于修复。很多相关的模具标准件和没有相应的国家标准,使模具组件的标准规范是当务之急。1.2.2国际塑料模具工业的发展趋势美国1991年发表的“国家关键技术报告”认为:材料领域的进展几乎可以显著改进国民经济所有部门的产品性能,提高它们的竞争能力;因此把材料列为六大关键技术的首位。这是由于先进材料与制造技术是未来国民经济与国防力量发展的基础,是各种高、新技术成果转化为实用产品与商品的关键。当前各种新材料市场规模超过1000亿美元,预计到2000年将达4 000亿美元。由新材料带动而产生的新产品新技术则是一个更大的市场。以上参展项目基本上代表了当前国际和国内的先进水平和发展趋势。总体来说,西方国家的模具事业发展较早,也比我国更先进一些。国外的模具发展状况具体表现为以下特征: 集成化技术 现代模具设计制造系统不仅应强调信息的集成,更应该强调技术人员和管理方式的集成。在开发模式制造系统时强调“多集成”的概念,即信息集成、智能集成、串并行工作机制集成及人员集成,这更适合未来制造系统的需要。 智能化技术 应用人工智能技术实现产品生命周期各个环节的智能化,以及模具设备的智能化,也要实现人与系统的融合及人在其中智能的充分发挥。 表1.1国内外塑料模具技术比较表 表1.1 第二章 塑料的工艺性分析2.1塑件的原材料分析塑件的原材料 丙烯腈-丁二烯-苯乙烯塑料(ABS塑料)主要用途:ABS树脂是五大合成树脂之一,塑料ABS树脂是目前产量最大,应用最广泛的聚合物,它将PB,PAN,PS的各种性能有机地统一起来,兼具韧,硬,刚相均衡的优良力学性能,还具有易加工、制品尺寸稳定、表面光泽性好等特点,容易涂装、着色,还可以进行表面喷镀金属、电镀、焊接、热压和粘接等二次加工,广泛应用于机械、汽车、电子电器、仪器仪表、管道、接头、纺织和建筑等工业领域,是一种用途极广的热塑性工程塑料。基本性能:塑料ABS是一种无毒、无味的,其外观呈现出象牙色的半透明状态,或透明颗粒或粉状。其密度为1.051.18g/ cm,收缩率为0.4%0.9%,弹性模量值为0.2Gpa,泊松比值为0.394,吸湿性250。塑料ABS有优良的力学性能,其冲击强度极好,可以在极低的温度下使用;塑料ABS的耐磨性优良,尺寸稳定性好,又具有耐油性,可用于中等载荷和转速下的轴承。ABS的耐蠕变性比PSF及PC大,但比PA及POM小。ABS的弯曲强度和压缩强度属塑料中较差的。ABS的力学性能受温度的影响较大。塑料ABS的热变形温度为93118,制品经退火处理后还可提高10左右。ABS在-40时仍能表现出一定的韧性,可在-40100的温度范围内使用。成型工艺:塑料ABS也可以说是聚苯乙烯的改性,比HIPS有较高的抗冲击强度和更好的机械强度,具有良好的加工性能,可以使用注塑机、挤出机等塑料成型设备进行注塑、挤塑、吹塑、压延、层合、发泡、热成型,还可以焊接、涂覆、电镀和机械加工。ABS的吸水性比较高,加工前需进行干燥处理,干燥温度为7085,干燥时间为26h;ABS制品在加工中容易产生内应力,如应力太大,致使产品开裂,应进行退火处理,把制件放于7080的热风循环干燥箱内24h,再冷却至室温即可。2.2塑料件的结构、尺寸精度及表面质量分析本课题设计塑件如下图 图2-1 1)塑件的结构分析:从图上分析,该零件没有侧孔、内凹槽,塑件的壁厚较均匀,有利于零件的成型。因此,模具设计时只需考虑型芯、型腔的加工,设计模具是必须考虑其至少有一个或两个以上的彻抽芯机构。2)尺寸精度分析塑件的尺寸精度是指所获得的塑件尺寸与产品图中尺寸的符合程度,即所获塑件尺寸的准确度影响塑件精度(公差)的因素主要有:具制造误差及磨损,尤其是成型零件的制造和装配误差以及使用中的磨损;件收缩率的波动;型工艺条件的变化;塑件的形状,飞边厚度波动; 脱模斜度和成型后塑件尺寸变化等一般塑件的尺寸精度是根据使用要求确定的,但还必须充分考虑塑料的性能及成型工艺特点,过高的精度要求是不恰当的该塑件尺寸精度无特殊要求,设计如图,所有尺寸均为自由尺寸,可按查取公差,起主要尺寸公差标注如下:(单位均为) (GB/T14486-1993) 塑件外形尺寸:30 0 -0.50 80 0 -0.74. 250 -0.50内径尺寸:18 +0.38 0 23 +0.44 0 20 +0.38 0 40+0.6 0 25+0.50 0 5 +0.24 0图2-23)表面质量分析:该零件为三通管,塑件表面质量包括有无斑点,条纹,凹痕,起泡,变色等缺陷,还有表面光泽性和表面粗糙度。为满足制品表面质量及嵌件的定位精度,采用二板模侧口进胶。 塑件的表面粗糙度,除了在成型时从工艺上尽可能避免冷疤,波纹等疵点外,主要由模具成型零件的表面粗糙度决定。一般模具的表面粗糙度比塑件的表面粗糙度高一级。对于透明的塑件要求型腔和型芯的表面粗糙度相同,而不透明的塑件,则根据使用情况可以不同。该塑件要求外形美观,色泽鲜艳,外表没有斑点及溶接痕,粗糙度可取Ra0.8um,(不同加工方法和不同材料所能达到的表面粗糙度 GB/T 14234-1993)而塑件内部没有较高的表面粗糙度要求。4)塑件壁厚设计的基本原则:均匀壁厚或尽可能一致,否则会因固化或冷却速度不同而引起收缩不均匀,从而在塑件内部产生内应力导致塑件产生翘曲,缩孔甚至开裂等缺陷。若塑件结构必须有厚度不均匀时,则应使其变化平缓,避免突变,否则易变形。塑件壁厚大小主要取决于塑件品种,塑件大小及成型工艺条件,热固性塑料的小塑件壁厚取1.0-2mm,大型件取3-8mm.热固性塑料易于成型薄壁塑件,壁厚可达0.25mm,但一般不宜小于0.9mm,常选2-4mm。综上分析可以看出,注射时在工艺参数控制的较好的情况下,零件的成型要求可以得到保证但是为了加工方便和模具装配方便,采用镶拼结构。2.3 塑件形状分析 三通管接头如图所示,该零件材料为ABS,表面要求光滑,不允许有飞边、凹痕等缺陷,故采用三向侧抽芯。 图2-3 第三章 注塑工艺设计3.1工艺参数的计算3.1.1塑件的体积和质量的计算根据塑件ABS材料分析,得知材料密度= 1.031.08g/cm,故取平均密度=1.05 g/cm。根据塑件图的尺寸,假设塑件是实体,计算出它的体积,再减去空心部分的体积。(也可直接通过proe直接计算出质量) 图3-13.1.2注塑机的选择注塑机又名注射成型机或注射机。它是将热塑性塑料或热固性料利用塑料成型模具制成各种形状的塑料制品的主要成型设备。分为立式、卧式、全电式。注塑机能加热塑料,对熔融塑料施加高压,使其射出而充满模具型腔。1)初选设备 该塑件制品初步选定注射机类型为螺杆式注射机。2)注射机的最大注射量确定成型塑件所需的注射量Mr 浇注系统凝料的重量(体积)在模具没有最后确定之前是一个未知数:若是流动性好的普通精度塑件,浇注系统凝料为塑件质量或体积的15%-20%(注塑厂统计资料),若是流动性不太好或是精密塑件,根据每个塑件所需浇注系统的质量或体积是塑件的0.2倍,当塑件溶体黏度高,塑件愈小,壁越薄,型腔越多又做平衡式布置时,浇注系统的质量或体积甚至还要大,所以以塑件总重量(体积)的60%估算。 成型塑料所需的注射量Mr=成型塑件的质量+浇注系统的质量。即: Mr=25.60+25.60 X 60%=40.96g确定注射机最大注射量Mmax注射机的最大注射量是指注射机螺杆或柱塞以最大注射行程注射时,一次所能达到的塑料注射量,不同类型的注射机最大注射量有不同的标定方法,螺杆式注射机是以一次所能注射出的塑料溶体体积(以cm)表示。这种方法的优点是不论何种塑料,最大注射量的数值都是相同的,因此,对任一种塑料,一次所能注射的熔体克数为 Mmax=V式中 V - 注射机最大注射量 cm - 所注射的塑料熔体密度 g/ cm生产实践表明:应使塑料制品的用料量之和为其的公称注射量的25%75%,最低不得低于10%,则有:40.96/0.25=163.84cm40.96/0.75=54.61 cm故注塑机的公称注射量可在60cm3、125cm3、250cm3中选择,初选公称注射量为125 cm3。即: Mmax= V=1251.575=196.875g注射机的初步选定 根据注射机的最大注射量以及最大注射压力初步选定注射成型机为XS-ZY-125,其主要参数如表 表3.1 3.2 塑件注塑成型工艺参数 查阅参考资料塑料模具设计,可得ABS塑料的注射工艺参数如下: 预热干燥:温度 100-110 时间 0.5-1.0h 料筒温度:前部 150-170 中部 170-190 后部180-200 喷嘴温度:170-180 模具温度:50 -70 注塑压力:70-90MPa 保压压力:50-70MPa 注射时间:2-5s 保压时间:10-15s 冷却时间:15-30s 总周期: 30-60s 后期处理:设备 红外线烘箱 温度 70 时间 0.5-1h第四章 模具结构方案的确定4.1分型面的选择,型腔的数目和排列方式4.1.1分型面的选择分型面的选择很重要,它对塑件的质量,操作难易,模具结构及制造影响很大。在选择分型面的时候应遵循以下基本原则: 分型面应选在塑件外形最大轮廓处;确定有利的留模方式,便于塑件顺利脱模;保证塑件的精度要求;满足塑件的外观质量要求;考虑成型面积和锁模力;便于模具加工;对侧抽芯的影响;考虑排气效果。 因此,在设计中,分型面的选择很重要,它对塑件的质量操作难易,模具结构及制造影响很大。分型面要求设计在塑件的最大截面积处,而且不宜设在曲面或圆弧面上,由于该塑件为三通管,在设计时,也应该充分考虑该塑件的塑性。因此设计了其两种分型面。分型面分型面 图4-1 图4-2如图4-1所示,如果按此位置作为分型面,模具考虑用一个彻抽芯机构即可。而模具分析,如果按照图4-1其前后模则需要增加滑块才能脱模,使得大大增加了模具的制作难度,如果按照图4-2作为分型面,模具如图4-2所示,按此位置作为分型面,模具考虑用三个彻抽芯机构。虽然图4-1的分型面可减少彻抽芯数目,模具加工简单,但对工件成型影响较大,三通管直孔位置排气相对图4-2相差很大,容易造成气纹,使得三通管内部精度不足,成型难,而图4-2选用这个位置作为分型面,三个孔位排气良好,虽要三个彻抽芯数目,但是能够使得工件成性优良,精度准确,因此,通过以上两种分型面综合考虑,最后选择以图4-2所示位置为分型面,4.1.2型腔的设计 为了使模具与注射机相匹配以提高生产率和经济性,并保证塑件精度、模具设计前应确定合理的型腔数目。由于型腔的排布与浇注系通密切相关的,所以在模具设计时应综合加以考虑。型腔的排布应使每个型腔都能通过浇注系统从总压力中均等地分得所需的足够压力,以保证塑料熔体能同时均匀地充填每个型腔,从而使各个型腔的塑件内在质量均一稳定,因此,设计型腔如图4.3所示。图4-34.2成型零件结构设计成型零部件的设计应在保证塑件质量要求的前提下,从便于加工、装配、使用、维修等角度加以考虑。其中最重要的是凹模和凸模尺寸的设计。成型零部件工作尺寸时指成型零部件上直接决定塑件形状的有关尺寸,主要包括型腔和型芯的径向尺寸及高度尺寸,及孔中心距等。本设计中采用平均值法计算,其中,塑件的未注公差取IT7级精度。塑件尺寸的公差值可查相关资料得到。 模具制造精度取=31。4.2.1凹模结构设计 凹模是成型塑件外表面的零部件,用于成型制件的外表面,有被称为阴模、型腔。其结构类型不同主要可分为有整体式和组合式。(1)整体式整体式凹模是由整块金属材料直接加工而成,用于形状简单的中小型模具。其特点是强度高、刚度好,如图: 图4-4(2)组合式组合式是将整体式凹模作为一种凹模块,直接嵌入到固定板中,或嵌入模框中,在将模框嵌入到固定板中。适用于制作尺寸不到的多型腔。其特点是加工方便,易损件便于更换,凹模可用冷挤压或其他方法单独加工,型腔形状与尺寸一致性好。设计如图: 图4-5而本塑料若采用整体式,则会导致侧向抽芯的难度加大,增加成本。所以采用组合式。这样可以改善加工工艺性,减少热变形,并且能更有效的排气。所以采用组合式的设计。4.2.2型芯设计凸模和型芯是成型塑件内表面的主要零件,本设计中塑件对称性好,结构简单,只需三个大型芯,不必再设小型芯,其型芯设计成图4-6 图4-6 4.3成型零件的底版与侧壁厚度尺寸的确定 塑料模具型腔在成型过程中受到熔体的高压作用,应具有足够的强度和刚度,如果型腔侧壁和底板厚度过小,可能因强度不够而产生塑性变形甚至破坏;也可能因刚度不足而产生挠曲变形,导致溢料和出现飞边,降低塑件尺寸精度并影响顺利脱模。因此,应通过强度和刚度计算来确定型腔壁厚,尤其对于重要的精度要求高的或大型模具的型腔,更不能单纯凭经验来确定型腔侧壁和底板厚度。 模具型腔壁厚的计算,应以最大压力为准。而最大压力是在注射时,熔体充满型腔的瞬间产生的。随着塑料的冷却和浇口的冻结,型腔内的压力逐渐降低,在开模时接近常压。理论和实践表明,大尺寸的模具型腔,刚度不足是主要矛盾,型腔壁厚应以满足刚度条件为准;而对于小尺寸的模具型腔,在发生大的弹性变形前,其内应力往往超过了模具材料的许用应力,因此强度不够是主要矛盾,设计型腔壁厚应以强度条件为准。刚度计算的条件则由于模具特殊性,可以从以下几个方面加以考虑: 要防止溢料。模具型腔的某些配合面当高压塑料熔体注入时,会产生足以溢料的间隙。为了使型腔不致因模具弹性变形而发生溢料,此时应根据不同塑料的最大不溢料间隙来确定其刚度条件。 应保证塑件精度。塑件均有尺寸要求,尤其是精度要求高的小型塑件,这就要求模具型腔具有很好的刚性,即塑料注入时不产生过大的弹性变形。最大弹性变形值可取塑件允许公差的1/5,常见中小型塑件公差为0.13-0.25,可按塑件大小和精度等级选取。上述要求在设计模具时其刚度条件应以这些项中最苛刻者(允许最小的变形值)为设计标准,但也不宜无根据的过分提高标准,以免浪费材料,增加制造难度。 型腔壁厚的计算 根据经验数据法 教材 表4-8 型腔底壁厚度的经验数据。 =(0.120.13)b=0.12*30=3.6mm 单型腔侧壁厚度的经验计算公式为:=0.20t+17(型腔压力490MPa)。多型腔模具的型腔与型腔之间的壁厚的经验计算公式为/2。 =0.2*30+17=23m4.4浇注系统的设计 所谓浇注系统是指从主流道的始端到型腔之间的熔体流动的通道,其作用是使塑料熔体平稳而有序的充填到型腔中,以获得组织致密,外形轮廓清晰的塑件。浇注系统由主流道,分流道,浇口等组成,浇注系统设计的优劣,直接影响到塑件的外观,物理性能,尺寸精度,成型周期等。 浇注系统设计的基本原则:适应塑件的工艺性 为此,应深入了解塑料的工艺性,分析浇注系统对塑料熔体流动的影响,以及在充模,保压补缩和倒流各阶段中,型腔内塑料的温度,压力变化情况,以便设计出适合塑料工艺特性的理想的浇注系统,保证塑件的质量。排气良好 排气的顺利与否直接影响成型过程和塑件质量,不能顺利排气会使注射成型过程充填不满或产生明显的熔接痕等缺陷。因此,浇注系统应能顺利地引导熔体充满型腔,并在填充过程中不产生紊流或涡流,是型腔内的气体能顺利地排出。流程要短 在保证成型质量和满足良好排气的前提下,尽量缩短熔体的流程和减少拐弯,以减少熔体压力和热量损失,保证必需的充填型腔的压力和速度,缩多填充及冷却时间缩多,缩短成型周期,从而提高效率,减少塑料用量;提高熔接痕强度,或使溶接痕不明显。对于大型塑件可采用多浇口进料,从而缩短流程。避免料流直冲型芯或嵌件 高速熔体进入型腔时,要尽量避免料流直冲小型芯或嵌件,以防型芯和嵌加变形和位移。修整方便,保证塑件外观质量 设计浇注系统时要结合塑件大小,结构形状,壁厚及技术要求,综合考虑浇注系统的结构形式,浇口数量和位置。做到去除,修整浇口方便,无损塑件的美观和使用。例如电视机,录音机等外壳,浇口绝不能开设在对外观有严重影响的外表面上,而应设在隐蔽处。防止塑件变形 由于冷却收缩的不均匀性或需要采用多浇口进料时,浇口收缩等原因可能引起塑件变形,设计时应采取必要措施以减少或消除塑件变形。浇注系统在分型面上的投影面积应尽量小,容积也应尽量少,这样既能减少塑料耗量,又能减小所需锁模力。浇注系统的位置尽量与模具的轴线对称,浇注系统与型腔的布置应尽量减小模具的尺寸。4.4.1主流道的设计 按按主流道的轴线与分型面的关系,浇注系统有直浇注系统和横浇注系统。在卧式和立式注射机中,主流道轴线垂直于分型面,属于直浇注系统;在直角式注射机中,主流道轴线平行于分型面,属于横浇注系统。 浇口套又称为主流道衬套。主流道上端与注射机喷嘴紧密接触,因此其尺寸应该按注射机喷嘴尺寸选择。浇口套的长度按模具模板厚度尺寸选取。 主流道一般位于模具中心线上,它与注射机喷嘴的轴线重合,以利于浇注系统的对称布置。主流道一般设计得比较粗大,以利于熔体顺利地向 分流道流动,但不能太大,否则会造成塑料消耗增多。反之主流道也不宜过小,否则熔体流动阻力增大,压力损失大,对冲模不利。因此,主流道尺寸必须恰当。通常对于黏度大的塑料或尺寸较大的塑件,主流道截面尺寸应设计得大一些;对于黏度小的塑件或尺寸较小的塑件,主流道截面尺寸设计得小一些。 主流道横截面形状通常采用圆形截面。为了便于留道凝料的饿脱出,主流道设计成圆锥形,其锥度=2- 4,内壁粗糙度Ra小于0.4m,小端直径一般取3-6比注射机喷嘴直径大0.5-1(取4),Rar+(0,5-1) ,主流道的长度有定模座厚度确定(取16),一般总长度不超过60。如右图所示,根据注射机相关参数SR=17,确定圆弧为16,L=15,N=40,直径d=16。 图4-74.4.2分流道的设计 主流道与浇口的料流通道,是塑料熔体由主流道流入模腔的过渡段,负责将熔体的流向进行平稳的转换,在多腔模中还起着将熔体向各个模腔分配的作用。 1)分流道的截面形状及尺寸 分流道截面形状和尺寸应根据塑件的结构和分流道的长度等因素来确定。由流道的效率(流道的截面积与周长的比值)分析可知,圆形和矩形流道的效率最高,即具有压力损失少的最大截面积和传热损失少的流道的最小面积,因此圆形截面的矩形截面是分流道比较理想的形状。 综合考虑,虽然圆形和矩形流道的效率最高,但由于圆形截面分流道因其以分型面为界分成两半进行加工才利于凝料脱出,加工工艺性不佳,且模具闭合后难以精确保证两半圆对准,故生产实际中不常使用;矩形截面的分流道不易于凝料的推出,生产中也比较少用。 实际生产中常采用梯形截面分流道。梯形截面分流道容易加工,且塑料熔体的热量散失及流动阻力均不大。根据经验,一般取梯形流道的深度为梯形截面大底边宽度的2/3-3/4,侧面斜度取5- 10。对于壁厚小于3,质量200以下的塑件,可采用下面的经验公式确定其截面大底边宽度尺寸: D=0.2654 式中: D梯形的大底边宽度,mm m塑件的质量,g L分流道的长度,mm 对于U形截面的分流道,H=1.25R,R=0.5D。梯形分流道截面尺寸 表4-1 2)分流道的长度 分流道要尽可能短,且少弯折,以利于最经济地使用原料和减少注射机的能耗,减少压力损失和热量损失。若分流道设计得比较长时,其末端应留有冷料穴,以防前锋冷料堵塞浇口或进入模腔。3)流道的表面粗糙度 分流道的表面粗糙度一般取1.6um左右,不需要很低,这样的表面有助于塑料熔体的外层冷却皮层固定,从而与中心部位的熔体之间产生一定的速度差,以保证熔体流动时具有适宜的剪切速率和剪切热。4)分流道的布置 在多型腔模具中分流道的布置中有平衡式和非平衡式两类。平衡式布置是指分流道到各型腔浇口的长度,端面形状,尺寸都相同的布置形式。它要求各对应部位的尺寸相等,这种布置可实现均衡送料和同时充满型腔的目的,使成型的塑件力学性能基本一致。但是,这种形式的布置使分流道比较长。非平衡式布置是指分流道到各型腔浇口长度不相等的布置,这种布置使塑件进入各型腔有先有厚,因此不利于均衡送料,但对型腔数量多的模具,为了不使流道过长,也常采用。为达到同时充满型腔的目的,各浇口的断面尺寸要制作得不同,在试模中要多次修改才能实现。5)分流道的设计要点 保证足够的注塑压力使塑料熔体顺利充满型腔的前提下,分流道截面积与长度尽量取小值,分流道转折处应以圆弧过渡。流道较长时,在分流道的末端应开设冷料井。分流道的位置可单独开设在定模板上或动模板上,也可以同时开设在动定模板上,合模后形成分流道截面形状。分流道与浇口连接处应加工成斜面,并用圆弧过渡。4.4.3浇口的设计 浇口亦称进料口,是连接分流道与型腔的最短通道,它是浇注系统的关键部分。浇口的形状,位置和尺寸对塑件的质量影响很大。其主要作用是: (1)型腔充满后,熔体在浇口处首先凝结,防止其倒流。 (2)熔体在流经狭窄的浇口时产生摩檫热,使熔体升温,有助于充模。(3)易于切除浇口余料,二次加工方便。(4)对于多型腔模具,浇口能用来平衡进料,对于多浇口单型腔模具,浇口不仅可以用来平衡进料,还可以用来控制熔合纹在塑件中的位置。浇口的尺寸一般根据经验确定,断面积为分流道断面积的3% -9% , 断面形状为矩形或圆形,浇口的长度为1-1.5mm。在设计浇口时,往往先取较小的尺寸值,以便在试模时逐步加以修正。当塑料熔体通过浇口时,剪切速率增高,同时熔体的内磨檫加剧,使料流的温度升高,粘度降低,提高了流动性能,有利于充型。但浇口尺寸过小会使压力损失增大,凝料加快,补缩困难,甚至形成喷射现象,影响塑件质量。 图4-8浇口位置 浇口位置开设正确与否,对塑件的成型性能和质量影响很大,因此合理选择浇口位置是设计浇注系统时的重要环节。在确定浇口位置时,应注意如下几点:1 尽量缩短流动距离2 浇口应开设在塑件壁最厚处3 尽量避免塑件出现熔合痕4 避免在承受弯曲或冲击载荷的部位设置5 浇口应开设在不影响型芯稳定性的部位6 浇口应开设在不影响塑件外观的部位7 浇口的设置应避免熔体断裂 图4-94.4.4冷料井的设计 冷料井位于主流道正对面的动模板上,或处于分流道末端,其作用是接受料流前锋的“冷料”,防止“冷料”进入型腔而影响塑件质量,开模时又能将主流道的凝料拉出。冷料井的直径宜大于大端直径,长度约为主流道大端直径。 常见的冷料穴及拉料杆的形式有如下几种: 1.钩形(Z形)拉料杆 2.锥形或钩槽拉料穴 3.球形头拉料杆 4.分流锥形拉料杆 5.无推杆的拉料穴 基于本次设计的模具,可采用底部带有拉料杆的冷料井,这类冷料井的底部由一个拉料杆构成。拉料杆装于型腔固定板上,因此它不能随脱模机构运动。利用Z头形的拉料杆配合冷料井图4.4或圆柱T字头如图4.5所示。 图4-10 图4-114.4.5排气系统的设计型腔内气体的来源,除了型腔内原有的空气外,还有因塑料受热或凝固而产生的低分子挥发气体。 一般来说,对于结构复杂的模具,事先较难估计发生气阻的准确位置。所以,往往需要通过试模来确定其位置,然后再开排气槽。 排气的方式有开设排气槽和利用模具零件配合间隙排气。 开设排气槽通常要遵循的原则是:(1)、排气槽最好开设在分型面上,因为分型面上因排气槽而产生的飞边,易随塑件脱出。 (2)、排气槽的排气口不能正对操作人员,以防熔料喷出而发生工伤 事故。 (3)、排气槽最好开设在靠近嵌件和塑件最薄处,因为这样的部位最 容易形成熔接痕,宜排出气体,并排出部分冷料。 (4)、排气槽的宽度可取1.51.6mm,其深度以不大于所用塑料的溢 边值为限,通常为0.020.04mm。 本塑件的排气槽开设在分型面上,因为分型面上因排气槽而产生的飞边,容易随塑件脱出。采用间隙排气的方法,利用了分型面及零件的配合间隙排气。4.5导向与定位机构4.5.1导向机构的功用 任何一副模具在定动模之间都设置有导向机构。其作用有如下:定位作用 合模时维持动定模之间的一定方位,合模后保持模腔的正确形状。导向作用 合模时引导动默按序闭合,防止损坏型芯,并承受一定的侧向力。承载作用 采用推件板脱模或三板式模具结构,导柱有承受推件板和定模型腔板的重载荷作用。持运动平稳作用,对于大中型模具的脱模结构,有保持机构运动灵活平稳的作用。4.5.2导向机构的设计导柱 国家标准规定了两种结构形式,带头导柱和有肩导柱。有的导柱开设油槽,内存润滑剂,以减小导柱导向的摩檫,小型模具和生产批量小的模具主要采用带头导柱,大型模具和生产批量大的模具多采用有肩导柱。中小型模具导柱直径约为模板两直角边之和的1/201/35。大型模具导柱直径约为模板两直角边之和的1/301/40。具体直径可查塑料模架标准。国家规定导柱头部为接锥形,截锥形长度为导柱直径的1/3,半锥角为10 15 ,也有头部采用半球形的导柱,导柱具体尺寸可查有关国家标准。图4-12带头导柱 如表 导柱直径d与模板外形尺寸关系 表4-24.5.3 导套的设计导套是与安装在另一半模上的导柱相配合,用以确定动、定模的相对位置,保证模具运动导向精确的圆套零件。导套常用的结构形式有两种一种是直导套,另一种是带头导套。在本设计中,采用的是带头导套其特点是带有轴向定位台阶。图4.-13 带头导套4.6脱模机构的设计在注射成型的每一个循环中,都必须使塑件从模具型腔中或型芯上脱出,模具中这种脱出型件的机构称为推出机构(或称脱模机构)。推出机构的作用包刮推出,取出两个动作,即首先将塑件和浇注系统凝料等与模具松动分离,称为脱出,然后把其脱出物体从模具内取出。脱模机构的设计原则:塑料滞留于动模边,以便借助于开模力驱动脱模装置,完成脱模动作,致使模具结构简单。防止塑件变形或损坏,正确分析塑件对模腔的粘附力的大小及其所在部位,与针对性的选择合适的脱模装置,是推出重心与脱模阻力中心重合。力求良好的塑件外观,在选择顶出位置时,应尽量设在塑件内部或对塑件外观影响不大的部位。在采用推杆脱模时,尤其要注意这个问题。结构合理可靠,脱模机构应工作可靠,运动灵活,制造方便,更换容易,且具有足够的强度和刚度。推出机构的工作原理:推管有推管固定板,和推板经螺栓联接后被夹紧。注射机上的顶柱作用在推板上,经推管传递脱模力将制品从型芯上推出。拉料杆在开模瞬间拉住浇注系统凝料,使其随同制品滞留在动模一侧,脱模时再将凝料推出。在合模时,复位杆被定模推回,使整个脱模机构复位。 脱模力eQ由两部分组成,即式中 制品对型芯包紧的锁模阻力(N)使封闭壳体脱模需克服的真空吸力(N)式中 0.1单位为MPaAb型芯的横截面面积(mm2)在脱模力计算中将的制品视为薄壁制品。反之,视为厚壁制品。产品=11(mm), t=6(mm)。所以有=11/6=1.83(mm),为厚壁制品。式中 E塑料的拉伸弹性模量(MP) 塑料的平均成形收缩率 塑料的泊松比H型芯脱模方向高低 型芯的脱模斜度 Kf 脱模斜度修正系数,其计算式为 f制品与钢材表面直接的静摩擦系数 厚壁制品的计算系数,其计算式为 比例系数 rcp型芯的平均半径(mm) t制品壁查资料得:E=1.9510MPa =0.5% f=0.2 =0 h=30mm =0 t=6mm r=11mm塑料名称成型收缩率 拉伸模量E泊松比与钢的摩擦系f ABS抗冲型-耐热型- -GFR - - 表4-3由式可知:Kf= =0.2 由式: =1.43由式可知:=0.1Ab=37.994综上所述得: =370.6(N)4.6.1推杆的位置布置 合理的推杆位置,塑件脱模时才不会产生变形和顶坏。推杆位置布置原则为: 推杆应设在脱模阻力大的位置; 推杆应设在塑件轻度刚度较大处; 推杆的分布应当均匀。 综合考虑各方面因素,本设计将推杆的位置布置在离中心线100mm处,三根推杆成正三角形分布。 图4-14 推杆4.6.2脱模机构的复位 为了保证塑件推出后合模能回到原来位置,则需设计复位部件。本设计中推杆和侧型芯在合模时会发生干涉,所以采用弹簧式先复位机构,使推出机构在合模前先复位,确保模具 合模动作顺利进行。如图4.12所示,设置4个弹簧,弹簧安装在复位杆上,并均匀的分布在推杆固定板的四周,以便推杆固定板受均匀的弹力,使推杆顺利复位。图4.-15 弹簧式先复位机构1-复位杆;2上模板;3垫块;4弹簧;5固定板;6推板 4.7侧抽芯机构设计当制品侧壁上带有与开模方向不同的内外侧孔或侧凹等阻碍制品成型后直接脱模时,必须将成型侧孔或是侧凹的零件做成活动的,这零件称为侧型芯如图。本模采用斜导柱抽芯机构。且斜导柱设在定模,滑块设在动模。斜导柱是分型抽芯机构的关键零件,其作用是:在开模时将侧抽芯拔出来,而在合模过程中将侧型芯与滑块顺利复位到成型位置。 图4-164.7.1抽芯距 S抽侧向抽芯或侧向瓣合模从成型位置到不妨碍制品顶出脱模位置所移动的距离称为抽芯距,用S抽表示,为了安全起见,抽拔距通常应比侧孔或侧凹的深度大2-3mm。但在侧向型芯或瓣合模块脱出侧孔或侧凹以后,其几何位置有限于制品脱模的情况下,抽芯距不能简单依靠这种方法确定。 所以,根据上所述本套模具的抽芯距可取S抽= 43 mm4.7.2确定斜导柱倾角当值增大时,要获得相同的抽芯力,则斜导柱所受的弯曲力要增大,同时所受的开模力也增大,因此,从希望斜导柱受力较小的角度考虑,愈小愈好,但是当抽芯距S抽一定时,值的减小必然导致斜导柱工作部分长度及开模行程的增大,且它们之间的相互关系是: = S抽sin =S抽cot 式中 S抽抽芯距 斜导柱工作部分长度 完成抽芯时所需的开模行程 因为开模行程受到注射机开模行程的限制,而且斜导柱工作长度的加长会降低斜导柱的刚度,所以斜导柱斜角应综合考虑本身的强度,刚度和注射机开模行程。从理论上推导,取2230为宜,在生产中斜角取15 20,最大不超过25。故斜导柱的倾角取=20。4.7.3确定斜导柱的尺寸式中l1、l2 斜导柱固定部分长度: L4 斜导柱工作部分长度;L5斜导柱引导部分长度(5-10mm);L斜导柱总长;D斜导柱固定部分台肩直径;斜导柱斜角;S抽抽芯距;斜导柱安装板厚度。查斜导柱各段长度计算表 塑料模具设计则:D=18 d=14L1=3.38 L2=35.32L3=2.55 L4=58.56 L=L1+L2+L4+L5=3.38+35.32+58.56+(510)=100mm4.8滑块与导滑槽的设计4.8.1滑块设计 滑块是斜导柱抽芯机构中的重要零部件。她上面安装有侧向型芯或成型镶块,注射成型和抽芯的可靠性都需要它的运动精度保证。滑块的结构形状可以根据具体制品和模具结构灵活设计,既可与型芯做成一个整体,也可采用组合装配结构,整体式结构多用于型芯较小和形状简单的场合,而组合式结构则市把型芯与滑块分开加工,然后装配在一起,采用组合式结构可以节省优质刚材(型芯用钢一般比滑块用钢要求高),并使加工变得比较容易。 图4-174.8.2滑槽设计 侧向抽芯过程中,滑块必须在滑槽内运动,并要求运动平稳且具有一定精度。设计滑槽时应注意下面问题:滑块完成抽拔动作后,其滑动部分仍应有全部或部分长度留在滑槽内。滑块的滑动配合长度通常要大于滑块宽度的1.5倍,而保留在滑槽内的长度不应小于这个数值的2/3,否则,滑块开始复位时容易偏斜,甚至损坏模具。如果模具尺寸较小,为了保证滑槽长度,可以把滑槽局部加长,使其伸出模外。滑槽地滑块的导滑部位采用间隙配合,配合特性选用H8/g7或H8/h8,其他各处均应留有间隙,滑块的滑动部分和滑槽导滑的表面粗糙度均应小于0.63-1.25um。滑块与滑槽的材料 滑块可用45钢或碳素工具钢制造,导滑部分要求硬度40HRC,滑槽可用耐磨材料制造,也可用45钢或碳素工具钢制造,要求硬度为52-56HRC。4.8.3滑块的导化滑形式 为了确保侧型芯可靠的抽出和复位,保证滑块在移动过程中平稳上下窜动和卡死现象,滑块与导滑槽必须很好配合和导滑。滑块与导滑槽的配合一般采用H7/f,其配合结构形式主要根据模具大小,模具结构和塑件的产量选择,常见的形式如下图所示: 图4-18图(a)为整体式滑块与整体式导滑槽,结构紧凑,但制造困难,精度难控制主要用于小型模具的抽芯机构;图(b)表示导滑部分设在滑块中部,改善了斜导柱的受力状态,
展开阅读全文