资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,*,*,28 十一月 2024,等差数列(三),1,等差数列:,a,n,a,n-1,=,d,(,n,2,,,n,N,+,),2,等差数列的通项公式:,(1),a,n,=,a,1,+(,n,-1),d,(2),a,n,=,a,m,+(,n-m,),d,(3),a,n,=,p,n+,q,(,p,、,q,是常数,),3,有几种方法可以计算公差,d,复 习 回 顾,6,.,在等差数列,a,n,中,a,1,+,a,n,=,a,2,+,a,n-,1,=,a,3,+,a,n-,2,=,练习,已知一个无穷等差数列的首项为,a,1,,,公差为,d,:,(1),将数列中的前,m,项去掉,其余各项组成一个新的数列,这个新数列是等差数列吗?如果是,它的首项和公差分别是多少?,(2),取出数列中的所有奇数项,组成一个新的数列,这个数列是等差数列吗?如果是,它的首项和公差分别是多少?,(3),取出数列中所有项数为,7,的倍数的各项,组成一个新的数列,这个新数列是等差数列吗?如果是,它的首项和公差分别是多少?,解,:(1),是,.,首项为,a,m+1,.,公差为,d,(2),是,.,首项为,a,1,.,公差为,2,d,(3),是,.,首项为,a,7,.,公差为,7,d,例,1,、,四个数成等差数列,其四个数的平方和为,94,,第一个数与第四个数的积比第二个数与第三个数的积少,18,,求这四个数,解析:,本题重点在设元的技巧,,如三个数成等差数列,可设这三个数为,a-d,a,a+d,如四个数成等差数列,可设这四个数为,a-3d,a-d,a+d,a+3d,这样设具有对称性,给运算带来很大方便,例 题 解 析,例,1,、,四个数成等差数列,其四个数的平方和为,94,,第一个数与第四个数的积比第二个数与第三个数的积少,18,,求这四个数,解:,设这四个数为,a-3d,a-d,a+d,a+3d,依题意有,解得,所以这四个数为:,-8,,,-5,,,-2,,,1,或,-l,,,2,,,5,,,8,或,1,,,-2,,,-5,,,-8,或,8,,,5,,,2,,,-,1,例,2,、,两个等差数列,5,8,11,和,3,7,11,都有,100,项,求:这两个数列相同项的个数,解法一,:已知两个等差数列,a,n,:5,,,8,,,11,,,公差为,3,a,n,=5+(n,1)3=3n+2,b,n,:3,,,7,,,11,,,公差为,4,b,n,=3+(n,1)4=4n-1,假设,a,n,的第,n,项与,b,n,的第,k,项相同,即,a,n,=,b,k,n,N,*,k,必是,3,的倍数,k,=3,6,9,12,组成新的等差数列,c,n,而相应的,n=3,7,11,组成新的等差数列,d,n,即,a,3,=,b,3,a,7,=,b,6,a,11,=,b,9,a,15,=,b,12,,,则,3,n,+2=4,k,1,又因为这两个数列最多只有,100,项,所以,:,又,nN,*,这两个数列共有,25,项相同。,解法二,:,已知两个等差数列,a,n,:,5,,,8,,,11,,,和,b,n,:,3,7,11,则通项公式分别是,a,n,=5+(n,1)3,b,n,=3+(n,1)4,观察:,5,8,11,14,17,20,23,26,29,32,35,38,41,3,7,11,15,19,23,27,31,35,39,43,47,51,例,2,、,两个等差数列,5,8,11,和,3,7,11,都有,100,项,求:这两个数列相同项的个数,因此,这两个数列相同项组成一个首项,c,1,=11,公差,d,=12,的等差数列,c,n,又,a,100,=5+(100,1)3=302,b,100,=3+(100,1)4=399,因为,相同的项不大于,a,100,和,b,100,中的较小者,,所以,,c,n,=11+(n,1)12302,又,nN,*,故这两个数列中相同的项共有,25,个。,例,3,、,巳知,:,一 直角三角形三条边长度成等差数 列,求证,:,它们的比为,3:4:5.,将成等差数列的三条边之长按从小到大排列,.,证 法,1:,设三边之长分别为,:,a,a,+,d,a,+2,d,(,a,0,d,0),则由勾股定理可得,a,+(,a,+,d,)=(,a,+2,d,),化简得,a,-2,ad,-4,d,=0,解得,a,=3,d,或,a,=-,d,(,舍去,),a,+,d,=4,d,a,+2,d,=5,d,三边之比为,3:4:5,证法,2:,设三边之长分别为,a,-,d,a,a,+,d,(,a,-,d,0,d,0),同证法,1,同理可得,(,a,-,d,),+,a,=(,a,+,d,),立即可得,a,=4,d,三边之长分别为,3,d,4,d,5,d,.,三 边之比为,3:4:5.,证法,3,:,启 发,:,三个数成等差数列且它们的和为一定值,可设这三个数分别为,a-d,a,a,+,d,;,设三边之长分别为,x,y,(,y,x,0),同证法一同理可得,x,+()=,y,例,4,、设,2,a,=3,,,2,b,=6,,,2,c,=12,,,问数列,a,、,b,、,c,成等差数列吗?如果是,请证明,并指出公差是 多少,?,如果不是,请说明理由,.,答:数列,a,、,b,、,c,成等差数列,证明:由,2,a,=3,,,2,b,=6,,,2,c,=12,得,:,a,=log,2,3,,,b,=log,2,6,c,=log,2,12,于是,b,=1+log,2,3,,,c,=2+log,2,3,(1+log,2,3),log,2,3=(2+log,2,3),(1+log,2,3)=1,即,b,a=c,b,数列,a,、,b,、,c,成等差数列,公差是,1,例,5,、,在等差数列,a,n,中若,a,1,+,a,2,+,a,3,+,a,4,+,a,5,=30,a,6,+,a,7,+,a,8,+,a,9,+,a,10,=80,,求,a,11,+,a,12,+,a,13,+,a,14,+,a,15,.,解,:,6+6=11+1 7+7=12+2 ,2,a,6,=,a,1,+,a,11,2,a,7,=,a,2,+,a,12,(,a,11,+,a,12,+,a,13,+,a,14,+,a,15,)+(,a,1,+,a,2,+,a,3,+,a,4,+,a,5,),=2(,a,6,+,a,7,+,a,8,+,a,9,+,a,10,),(,a,11,+,a,12,+,a,13,+,a,14,+,a,15,),=2(,a,6,+,a,7,+,a,8,+,a,9,+,a,10,)-(,a,1,+,a,2,+,a,3,+,a,4,+,a,5,),=280,30=130,1,已知等差数列的通项公式为,a,n,=11-2n,从哪一项开始它的项为负数,?,2,等差数列,a,n,中,已知,求,a,4,和,d,3.,已知,:,lga,,,lgb,,,lgc,与,lga,lg,2,b,,,lg,2,b,lg,3,c,,,lg,3,c,lga,都是等差数列,.,求,a,:,b,:,c,.,练 习,4,、等差数列,a,n,中,已知,a,10,23.,(1),若,a,25,22,,,问此数列从第几项开始为负?,(2),若数列从第,17,项起各项均为负,求公差,d,的取值范围。,思考,:,等差数列的通项公式涉及四个量:,a,n,a,1,n,d.,用方程的观点看,就是“知三求一”,列方程组,求基本量是解决数列问题的常用方法,但合理,利用等差数列的性质常可以简化运算,.,小 结,
展开阅读全文