资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,第5章 测量成果初级处理,51 观测值的改化,52 方位角的确定,53,数的凑整与留位,51 观测值的改化,距离、角度等定位元素都是在地球自然表面上测得的。,当测量范围较大、区域相距较远时,测量数据处理工作必须在高斯平面上进行,亦即高等级控制点的坐标是高斯平面坐标。,在大范围的控制测量中,需要,将地表观测元素(距离、角度等)改化成高斯平面上的相应值,才能参与平差计算。否则无法拼接。(如公路测量),观测值的改化包括距离改化、角度改化和高程改化。本节主要介绍距离观测值改化中的几个问题。,一.椭球体投影改化,(又叫归算改正),欲将地球自然表面上的距离值改化成高斯平面上的长度,必须先将它投影到参考椭球面上。,将地表上的距离观测值归算到参考椭球面上的工作叫椭球体投影改化,。,设地表上A、B两点间的平距为D,两点绝对高程平均值为H,m,;假设该位置处的参考椭球面与大地水准面重合,椭球平均半径为R。如下图。,设D投影在椭球面上的平距为S,则由两相似得:,D/S(R+H,m,)/R,S DR/(R H,m,)DD H,m,/(R H,m,),参考椭球面,(与大地水准面基本重合),当距离小于,10km,时,弦长与弧长,之差小于,1mm,。,若采用加改正数的形式,则上式成为:,S D+D,D D H,m,/(R H,m,),叫椭球体投影改正数。,H,m,远小于R,故多数情况下可略去分母中的H,m,,于是有:,D,D H,m,/R,二.高斯投影改化,(也叫投影改正),高斯投影是正形(保角)投影。投影时中央子午线与空心横向椭圆柱面相切。,因投影带有一定宽度(经差6,o,或3,o,),故除了中央子午线之外,与横向椭圆柱面不相切的地表区域投影后会被拉长、放大。因此,投影带内椭球面上任何一条边长在投影后都会产生伸长变形,并且这种变形的量值大小与该段边长所处位置至中央子午线的距离(即y坐标)有关。,设参考椭球面上A、B两点间的长度S投影到高斯平面后成为,l,,则,l,/S叫做投影的长度比,,用m表示。,m是一个与y坐标平均值有关的变量,恒大于1。,由控制测量学中的高斯投影理论可知:,式中,y,m,(y,a,y,b,)/2;,yy,a,y,b,;y,a,、y,b,分别为边长两端点a、b在高斯平面坐标系中的横坐标;R为地球平均半径。,若采用加改正数的形式,则有:,l,S,S,按上式改化距离的精度可达1cm。当精度要求较低时,可略去长度比中的最后一项,即:,S,S y,2,m,/(2R,2,),上式的几何意义见右图,(俯视图),。,S,l,s,;,l,s,SS;,S bb,(S/R);,bb,y,m,(,y,m,/,(,2R,),),S S y,2,m,/(2R,2,),一般只在四等以上控制测量中才考虑高斯投影改正。,圆切角等于圆心角(,y,m,/R,)的一半,三.抵偿投影面的概念,由上段知,在大范围、高精度的测量工程中,将地表上的距离观测值投影到高斯平面上需进行两次改化,即加上两项改正数。在施工测量中显得繁琐。,不难发现,椭球体归算改正D和高斯投影改正S的符号不同。,D,的符号,为负,,其,大小与,地表至投影面(,参考椭球面。此处假设与大地水准面重合,)的垂直距离,H,m,有关,;,S,的符号,为正,,其,大小与,投影边至中央子午线的距离(即,y坐标,),有关,。,对于确定的地面位置(,y,m,大致不变,),在确定的投影带(如3,o,带)中,可选择一个合适的投影高程面(,不是参考椭球面,而是某个假定的椭球面,),,改变,地表至投影面的距离,H,m,,从而,使D与S的符号相反、大小相等,,即D S0,意味着距离改化工作可省去不做,地表上的距离观测值就等于其在高斯平面上的长度。,如右图所示,假设将绝对高程平均值为H,m,、横坐标平均值为y,m,的地表平距投影到绝对高程为,H,d,的投影面(相当于投影椭球面的半径为R,H,d,)时能使两项改正数之和为零,即:,D S,D,H,m,/RS,y,2,m,/(2R,2,),D(H,m,H,d,)/R,+S y,2,m,/(2R,2,)=0,考虑到D与S的差异很小,可近似认为D S,,,于是有:,(H,m,H,d,)/R,y,2,m,/(2R,2,),H,d,H,m,y,2,m,/(2R),取R6371000m,有:,H,d,H,m,7.810,-8,y,2,m,式中,H,d,、H,m,、y,m,均以米为单位。,d,在绝对高程大致为H,m,、横坐标大致为y,m,的地区,选择高程为H,d,的椭球面作为投影面时,可认为地表上的距离观测值与高斯平面(,以所选的投影椭球为基础的高斯平面,)上的相应长度一致。,半径为(RH,d,)的椭球面称作抵偿椭球面或,抵偿投影面,;H,d,(,抵偿椭球面相对于参考椭球面的高度,)称作,抵偿面高程,。H,d,既可为正也可为负。,土木工程中很少进行“,角度的改化,”,;“高程基准面,零点差,”的概念比较简单,其实质就是一个高程“,加常数,”。有兴趣的同学可自学(,P101102,)。,抵偿投影面举例,:,假设某测区的y,m,为20580000m,H,m,为1500m。试求抵偿面高程和抵偿椭球的半径。并以1000m的边长为例验算抵偿的有效性。(取R6371km),解:去带号、减500km后,测区横坐标的真实值为:,y,m,80000m。,抵偿面高程:,H,d,H,m,7.810,-8,y,2,m,997.7m,抵偿椭球半径:R,RH,d,6371997.7m,按DS1000m验算:,D,D(H,m,H,d,)/R 0.0788m,S,S y,2,m,/(2R,2,)=+0.0788m,D+S 0,抵偿有效。,(若不选抵偿面:D,0.2354m,S 0.0788m,D+S,0.1566m),本节内容回顾,椭球体投影改化、高斯投影改化。,抵偿投影面的概念。,5-2 方位角的确定,一.方位角的概念,进行地面点定位时,既需确定点的绝对位置,也需确定点与点之间的相对位置。,确定两个地面点之间的相对位置时,光有距离还不够,还需知道两点连线的方向。在测量上,常用,方位角,来表示直线的方向,而,确定直线方向的工作叫做,直线定向,。,以某一,标准方向的北端,为基准,,顺时针,方向量至某直线的,水平夹角,,称为该直线的,方位角,,角值为0360,o,,如右图。,标准方向不同时,同一直线的方位角值也不同。,A,B,直线AB的方位角,北,标准方向,二.方位角的种类,测量上有三种类型的方位角。,真方位角,:以真北方向线为基准的方位角,用,A,表示。,真北方向就是,真子午线,方向(,N,),如右图。地面上某点的真子午线方向是指过该点的真子午线的切线的北方向,,,如右下图中的,P,点。,N,P,Q,真北方向,A,PQ,2.,磁方位角,:以磁北方向线为基准的方位角,用M表示。,磁北方向也叫,磁子午线,方向(N,)。地面上某点的磁子午线方向是指过该点的磁子午线,(包含P点和地磁场南、北极点的平面与地球的交线),的切线的北方向。,磁北方向通常可用罗盘(指南针)确定,即在地球磁场的作用下,磁针自由静止时其轴线所指的北方向。,N,P,Q,磁北方向,M,PQ,3.,坐标方位角,:以轴北方向线为基准的方位角,用,表示。,轴北方向是平面直角坐标系中的纵轴(x)北方向,在高斯平面直角坐标系中,x轴方向是投影带中央子午线的北方向。,在同一投影带内,过任意一点作中央子午线的平行线(x,),均可作为轴北方向。,在独立平面直角坐标系中,假定的坐标纵轴便是其标准方向。,x,P,Q,坐标纵轴,PQ,y,x,x,三.几种方位角之间的关系,1.真方位角与磁方位角之间的关系,地球的地理南北极与地磁场的南北极并不重合,因此,过地面上某点的真子午线方向(N)与磁子午线方向(N,)也不一致,两者之间的夹角称为,磁偏角,,用,表示。,磁北(N,)在真北(N)的东面时(右下图),叫东偏,,为正;(N,)在(N)的西面时(右上图),叫西偏,,为负。在我国,的变化范围为,10,o,6,o,。,不论东偏、西偏,某直线方向的真方位角A与磁方位角M之间的关系如下:,AM,(本身有正负),(教材P103式(5-19)和(521)中前面的,负号应去掉,),2,.真方位角与坐标方位角之间的关系,由高斯投影原理知,中央子午线上任何一点处的真北方向(N)与轴北方向(x)一致。,因此,以中央子午线上的任何一点作为起点的直线,其坐标方位角与真方位角相等。,在投影带内除中央子午线以外的其它地方,轴北方向(x,)总是平行于中央子午线,但过某点P的子午线在投影后成为一条凹向中央子午线、收敛于两极的曲线(右上图虚线),其真北方向(过P点作子午线切线的北方向)将随P的位置变化,通常与轴北方向不一致,二者之间的夹角叫,子午线收敛角,,用,表示。,也有正负之分。轴北偏东(即轴北在真北的东面)时,,为正值;轴北偏西时,,为负值。,(右图中的,为正值),由图易知真方位角与坐标方位角的关系:,A,某点,i,的子午线收敛角可用其经、纬度 按下式计算:,i,(,L,i,L,0,)sin,B,i,(,L,0,为中央子午线经度),3.坐标方位角与磁方位角之间的关系,AM,,A,M ,利用三种方位角之间的关系,在某些情况下可根据需要进行转换。,在工程测量中,用得最多的是,坐标方位角,。,四.正、反坐标方位角,测量工作中的直线都是具有方向的。,如右图所示,直线AB的起点是A,终点是B,其方向用A-B的坐标方位角,AB,表示。,AB,是指从,过A点,的轴北方向(x)顺转至A、B的连线方向时所成的水平(夹)角,简称为AB的方位角。,直线BA以B为起点、A为终点,用B-A的坐标方位角,BA,表示其方向。,BA,是指从,过B点,的轴北方向(x)顺转至B、A的连线方向时所成的水平角,简称为BA的方位角。,A,B,x,AB,x,BA,坐标方位角有正、反之分。,AB,、,BA,分别称作直线AB的正、反方位角,而,BA,、,AB,则称作直线BA的正、反方位角。,同一直线的正、反坐标方位角相差180,o,,即:,j i,i j,180,o,正、反坐标方位角值都应在0 360,o,之间。若大于360,则需减去360。,如,i j,31,o,55,,则,j i,211,o,55,;,i j,315,o,28,,则,j i,135,o,28,i,j,x,ij,x,ji,i j,五.坐标方位角的推算,实际工作中并不直接测量每一条边(直线)的方位角,而是通过测量未知边与已知边(其坐标方位角为已知)的水平夹角,再推算未知边的方位角。,如左下图所示,已知边AB 的方位角为,AB,;为求观测边Ap的方位角,Ap,,在A点测量出AB与Ap的水平夹角,A,。根据方位角的定义(从轴北方向开始,顺量),结合左下图容易得到:,注意:,两条直线的,起点,须相同,!,计算结果大于360,o,时须减去360,o,,如右下图。,p,B,x,A,AB,Ap,A,B,x,A,AB,p,Ap,A,A,p,A,B,A,上式是方位角推算式之一。需注意,,A,是“,左角,”,即站在起点(角顶A)、面向终点(前进方向的未知点p)时,位于观测者左手边的角度。左角也可理解为“,从已知边,顺转,至未知边的水平角,”。,如果观测的水平角不是左角而是“,右角,”(即位于前进方向右边的角度,或,从已知边,逆转,至未知边,的水平角),如下中图中的,A,,则应按下式推算未知边的方位角:,A,p,A,B,A,同样应注意:两条直线的,起点,须相同!,计算结果小于0时需加360,如右下图。,p,A,B,A,p,A,B,A,Ap,AB,p,A,B,A,Ap,AB,推算方法归纳:前视(未知)边的方位角等于后视(已知)边的方位角,“加左角”,或,“减右角”,。,计算结果小于0时加360,大于360时减去360。,推算时必须注意分清已知边方位角的正、反。,上述推算方位角的方法虽然简单,却能解决任何形式的方位角推算问题。,23
展开阅读全文