资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,鸡兔同笼,湖北省襄阳市樊城区新华路小学,授课教师:唐立华,今有雉兔同笼,,上有三十五头,,下有九十四足,,问雉兔各几何?,笼子里有若干只鸡和兔,从上面数,有,35,个头;从下面数,有,94,只脚。鸡和兔各有几只?,鸡兔同笼,笼子里有若干只鸡和兔,从上面数,有,8,个头;从下面数,有,26,只脚。鸡和兔各有几只?,鸡兔同笼,1,、鸡和兔共,8,只。,2,、鸡和兔共有,26,只脚。,3,、鸡有,2,只脚。,4,、兔有,4,只脚。,鸡,兔,脚,笼子里有若干只鸡和兔,从上面数,有,8,个头;从下面数,有,26,只脚。鸡和兔各有几只?,鸡,8,兔,0,脚,笼子里有若干只鸡和兔,从上面数,有,8,个头;从下面数,有,26,只脚。鸡和兔各有几只?,鸡,8,兔,0,脚,16,笼子里有若干只鸡和兔,从上面数,有,8,个头;从下面数,有,26,只脚。鸡和兔各有几只?,鸡,8,7,兔,0,1,脚,笼子里有若干只鸡和兔,从上面数,有,8,个头;从下面数,有,26,只脚。鸡和兔各有几只?,鸡,8,7,兔,0,1,脚,16,18,笼子里有若干只鸡和兔,从上面数,有,8,个头;从下面数,有,26,只脚。鸡和兔各有几只?,鸡,8,7,6,5,4,3,2,1,0,兔,0,1,2,3,4,5,6,7,8,脚,笼子里有若干只鸡和兔,从上面数,有,8,个头;从下面数,有,26,只脚。鸡和兔各有几只?,鸡,8,7,6,5,4,3,2,1,0,兔,0,1,2,3,4,5,6,7,8,脚,16,18,20,22,24,26,28,30,32,笼子里有若干只鸡和兔,从上面数,有,8,个头;从下面数,有,26,只脚。鸡和兔各有几只?,假设全是鸡,:,82=16,(只脚),假设全是鸡,:,26-16=10,(只脚),4-2=2,(只脚),(,少算兔的脚,),82=16,(只脚),假设全是鸡,:,26-16=10,(只脚),4-2=2,(只脚),102=5,(只),兔:,鸡:,8-5=3,(只),(,少算兔的脚,),假设全是兔,:,84=32,(只脚),假设全是兔,:,32-26=6,(只脚),4-2=2,(只脚),(,多算鸡的脚,),84=32,(只脚),假设全是兔,:,32-26=6,(只脚),4-2=2,(只脚),(,多算鸡的脚,),84=32,(只脚),假设全是兔,:,32-26=6,(只脚),4-2=2,(只脚),鸡:,62=3,(只),8-3=5,(只),兔:,(,多算鸡的脚,),82=16,(只脚),1.,假设全是鸡,:,26-16=10,(只脚),4-2=2,(只脚),102=5,(只),兔:,鸡:,8-5=3,(只),84=32,(只脚),2.,假设全是兔,:,32-26=6,(只脚),4-2=2,(只脚),鸡:,62=3,(只),8-3=5,(只),兔:,假设法,(,多算鸡的脚,),(,少算兔的脚,),列方程,找等量关系:,笼子里有若干只鸡和兔,从上面数,有,8,个头;从下面数,有,26,只脚。鸡和兔各有几只?,鸡脚的只数,+,兔脚的只数,=,脚的总只数,解,:,设兔有,X,只,鸡有(,8-X,)只。,4X+2,(,8-X,),=26,4X+16-2X=26,16+2X=26,2X=26-16,X=5,鸡,:8-5=3(,只,),答:鸡有,3,只,兔有,5,只。,根据:鸡脚的只数,+,兔脚的只数,=,脚的总只数,有龟和鹤共,40,只,龟的腿和鹤的腿共,112,条,龟和鹤各有多少只,?,龟鹤问题,龟,相当于,“兔”,鹤,相当于,“鸡”,全班一共有,38,人,共租了,8,条船,每条大船乘,6,人,每条小船乘,4,人,每条船都坐满了。问大船和小船各多少条?,大船,相当于,“兔”,小船,相当于,“鸡”,怪鸡,4,只脚,怪兔,6,只脚,共,8,个头,38,只脚。,问鸡兔各几只?,新星小学”环保卫士”小分队,12,人参加植树活动,.,男同学每人栽了,3,棵树,女同学每人栽了,2,棵树,一共栽了,32,棵树,.,男女同学各几人,?,笼子里有若干只鸡和兔,从上面数,有,35,个头;从下面数,有,94,只脚。鸡和兔各有几只?,鸡兔同笼,
展开阅读全文