资源描述
,考情概览,试题类编,第十四,章 数,系的扩充与复数的引入,第十四章 数系的扩充与复数的引入,2010,2019,年高考全国卷考情,一览表,20102019年高考全国卷考情一览表,2020届一轮复习人教版数系的扩充与复数的引入ppt课件,2020届一轮复习人教版数系的扩充与复数的引入ppt课件,2020届一轮复习人教版数系的扩充与复数的引入ppt课件,考点,127,考点,128,考点,129,考点,127,复数的四则运算,2,.,(2019,全国,3,理,2,文,2,5,分,难度,),若,z,(1,+,i),=,2i,则,z=,(,D,),A.,-,1,-,iB.,-,1,+,i,C.1,-,iD.1,+,i,考点127考点128考点129考点127复数的四则运算 2,考点,127,考点,128,考点,129,考点127考点128考点129,考点,127,考点,128,考点,129,6,.,(2018,全国,2,文,1,5,分,难度,)i(2,+,3i),=,(,D,),A.3,-,2iB.3,+,2i,C.,-,3,-,2iD.,-,3,+,2i,解析,i(2,+,3i),=,2i,+,3i,2,=-,3,+,2i,.,7,.,(2018,全国,3,理,2,文,2,5,分,难度,)(1,+,i)(2,-,i),=,(,D,),A,.-,3,-,iB,.-,3,+,i,C,.,3,-,iD,.,3,+,i,解析,(1,+,i)(2,-,i),=,2,+,i,-,i,2,=,3,+,i,.,考点127考点128考点1296.(2018全国2,文1,考点,127,考点,128,考点,129,8,.,(2018,北京,理,2,文,2,5,分,难度,),在复平面内,复数,的,共轭复数对应的点位于,(,D,),A.,第一象限,B.,第二象限,C.,第三象限,D.,第四象限,9,.,(2018,浙江,4,4,分,难度,),复数,(,i,为虚数单位,),的共轭复数是,(,B,),A,.,1,+,iB,.,1,-,i,C,.-,1,+,iD,.-,1,-,i,考点127考点128考点1298.(2018北京,理2文2,考点,127,考点,128,考点,129,10,.,(2017,全国,1,理,3,5,分,难度,),设有下面四个命题,p,2,:,若复数,z,满足,z,2,R,则,z,R,;,其中的真命题为,(,B,),A,.p,1,p,3,B,.p,1,p,4,C,.p,2,p,3,D,.p,2,p,4,R,.,故,p,1,正确,;,p,2,:,因为,i,2,=-,1,R,而,z=,i,R,故,p,2,不正确,;,p,3,:,若,z,1,=,1,z,2,=,2,则,z,1,z,2,=,2,满足,z,1,z,2,R,而它们实部不相等,不是共轭复数,故,p,3,不正确,;,p,4,:,实数的虚部为,0,它的共轭复数是它本身,也属于实数,故,p,4,正确,.,考点127考点128考点12910.(2017全国1,理3,考点,127,考点,128,考点,129,11,.,(2017,全国,2,理,1,5,分,难度,),=,(,D,),A,.,1,+,2i,B,.,1,-,2i,C,.,2,+,i,D,.,2,-,i,12,.,(2017,全国,2,文,2,5,分,难度,)(1,+,i)(2,+,i),=,(,B,),A,.,1,-,i,B,.,1,+,3i,C,.,3,+,i,D,.,3,+,3i,解析,(1,+,i)(2,+,i),=,2,+,3i,+,i,2,=,1,+,3i,故选,B,.,13,.,(2017,山东,文,2,5,分,难度,),已知,i,是虚数单位,若复数,z,满足,z,i,=,1,+,i,则,z,2,=,(,A,),A.,-,2i,B.2i,C.,-,2,D.2,考点127考点128考点12911.(2017全国2,理1,考点,127,考点,128,考点,129,A.1B.,-,1C.iD,.,-,I,A,.,iB,.,1,+,i,C,.-,i,D,.,1,-,I,考点127考点128考点129A.1B.-1C.iD.,考点,127,考点,128,考点,129,16,.,(2015,全国,2,理,2,5,分,难度,),若,a,为实数,且,(2,+a,i)(,a-,2i),=-,4i,则,a=,(,B,),A.,-,1B.0C.1D.2,17,.,(2015,全国,1,文,3,5,分,难度,),已知复数,z,满足,(,z-,1)i,=,1,+,i,则,z=,(,C,),A,.-,2,-,iB,.-,2,+,i,C,.,2,-,iD,.,2,+,i,考点127考点128考点12916.(2015全国2,理2,考点,127,考点,128,考点,129,a=,(,D,),A.,-,4B.,-,3C.3D.4,解析,由题意,得,2,+a,i,=,(3,+,i)(1,+,i),=,2,+,4i,则,a=,4,.,19,.,(2015,安徽,文,1,5,分,难度,),设,i,是虚数单位,则复数,(1,-,i)(1,+,2i),=,(,C,),A,.,3,+,3iB,.-,1,+,3i,C,.,3,+,iD,.-,1,+,i,解析,由复数的乘法运算法则,得,(1,-,i)(1,+,2i),=,1,-,i,+,2i,-,2i,2,=,1,+,i,+,2,=,3,+,i,因此选,C,.,考点127考点128考点129a=(D)19.(2015,考点,127,考点,128,考点,129,z=,(,D,),A.1,+,iB.1,-,i,C.,-,1,+,iD.,-,1,-,i,A,.,1,+,iB,.,1,-,i,C,.-,1,+,iD,.-,1,-,I,考点127考点128考点129z=(D)A.1+iB.,考点,127,考点,128,考点,129,A.1,+,2iB.,-,1,+,2i,C.1,-,2iD.,-,1,-,2i,23,.,(2013,全国,2,理,2,5,分,难度,),设复数,z,满足,(1,-,i),z=,2i,则,z=,(,A,),A.,-,1,+,iB.,-,1,-,i,C.1,+,iD.1,-,i,考点127考点128考点129A.1+2iB.-1+2i2,考点,127,考点,128,考点,129,A.2,-,iB.1,-,2i,C.,-,2,+,iD.,-,1,+,2i,考点127考点128考点129A.2-iB.1-2i,考点,127,考点,128,考点,129,27,.,(2018,上海,5,4,分,难度,),已知复数,z,满足,(1,+,i),z=,1,-,7i(i,是虚数单位,),则,|z|=,5,.,解析,因为,(1,+,i),z=,1,-,7i,解得,|z|=,5,.,28,.,(2017,浙江,12,5,分,难度,),已知,a,b,R,(,a+b,i),2,=,3,+,4i(i,是虚数单位,),则,a,2,+b,2,=,5,ab=,2,.,解析,由题意可得,a,2,-b,2,+,2,ab,i,=,3,+,4i,考点127考点128考点12927.(2018上海,5,4,考点,127,考点,128,考点,129,29,.,(2016,天津,理,9,5,分,难度,),已知,a,b,R,i,是虚数单位,若,考点127考点128考点12929.(2016天津,理9,考点,127,考点,128,考点,129,考点,128,复,数的概念,1,.,(2019,全国,2,文,2,5,分,难度,),设,z=,i(2,+,i),则,=,(,D,),A.1,+,2iB.,-,1,+,2i,C.1,-,2iD.,-,1,-,2i,2,.,(2017,全国,3,理,2,5,分,难度,),设复数,z,满足,(1,+,i),z=,2i,则,|z|=,(,C,),考点127考点128考点129考点128复数的概念2.(2,考点,127,考点,128,考点,129,3,.,(2017,全国,1,文,3,5,分,难度,),下列各式的运算结果为纯虚数的是,(,C,),A,.,i(1,+,i),2,B,.,i,2,(1,-,i),C,.,(1,+,i),2,D,.,i(1,+,i,),解析,i(1,+,i),2,=,2i,2,=-,2,i,2,(1,-,i),=-,1,+,i,(1,+,i),2,=,2i,i(1,+,i),=-,1,+,i,(1,+,i),2,=,2i,为纯虚数,故选,C,.,考点127考点128考点1293.(2017全国1,文3,考点,127,考点,128,考点,129,5,.,(2016,全国,1,理,2,5,分,难度,),设,(1,+,i),x=,1,+y,i,其中,x,y,是实数,则,|x+y,i,|=,(,B,),解析,(,定义、性质,),因为,(1,+,i),x=,1,+y,i,x,y,R,所以,x=,1,y=x=,1,.,所以,|x+y,i,|=|,1,+,i,|=,故选,B,.,6,.,(2016,全国,1,文,2,5,分,难度,),设,(1,+,2i)(,a+,i),的实部与虚部相等,其中,a,为实数,则,a=,(,A,),A.,-,3B.,-,2,C.2D.3,解析,由已知,(1,+,2i)(,a+,i),=a-,2,+,(2,a+,1)i,.,(1,+,2i)(,a+,i),的实部与虚部相等,a-,2,=,2,a+,1,解得,a=-,3,故选,A,.,考点127考点128考点1295.(2016全国1,理2,考点,127,考点,128,考点,129,7,.,(2016,全国,2,文,2,5,分,难度,),设复数,z,满足,z+,i,=,3,-,i,则,=,(,C,),A.,-,1,+,2iB.1,-,2i,C.3,+,2iD.3,-,2i,解析,由,z+,i,=,3,-,i,得,z=,3,-,2i,所以,=,3,+,2i,故选,C,.,考点127考点128考点1297.(2016全国2,文2,考点,127,考点,128,考点,129,9,.,(2016,山东,理,1,5,分,难度,),若复数,z,满足,2,z,+=,3,-,2i,其中,i,为虚数单位,则,z=,(,B,),A,.,1,+,2iB,.,1,-,2i,C,.-,1,+,2iD,.-,1,-,2i,考点127考点128考点1299.(2016山东,理1,5,考点,127,考点,128,考点,129,(,A,),A.iB.,-,iC.1D.,-,1,解析,i,607,=,i,151,4,+,3,=,i,3,=-,i,i,607,的共轭复数为,i,.,考点127考点128考点129(A),考点,127,考点,128,考点,129,13,.,(2013,全国,1,理,2,5,分,难度,),若复数,z,满足,(3,-,4i),z=|,4,+,3i,|,则,z,的虚部为,(,D,),考点127考点128考点12913.(2013全国1,理2,考点,127,考点,128,考点,129,p,1,:,|z|=,2,p,2,:,z,2,=,2i,p,3,:,z,的共轭复数为,1,+,i,p,4,:,z,的虚部为,-,1,其中的真命题为,(,C,),A.,p,2,p,3,B.,p,1,p,2,C.,p,2,p,4,D.,p,3,p,4,A.2,+,iB.2,-,i,C.,-,1,+,iD.,-,1,-,i,考点127考点128考点129p1:|z|=2,考点,127,考点,128,考点,129,考点127考点128考点129,考点,127,考点,128,考点,129,考点127考点128考点129,考点,127,考点,128,考点,129,命题点,复数的运算,.,解题思路,先用复数的除法化简,再求模,.,21,.,(2019,江苏,2,5,分,难度,),已知复数,(,a+,2i)(1,+,i),的实部为,0,其中,i,为虚数单位,则实数,a,的值是,
展开阅读全文