资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,#,等差数列的性质,一个定义,:,a,n,-,a,n,-,1,=d,(,d,是常数,,,n2,,,nN*,),或,a,n+1,-,a,n,=d,(,d,是常数,,,nN*,),一个公式,:,a,n,=,a,1,+,(,n,-1,),d,一种方法,:累加法,一种思想,:方程思想,复习回顾,解析:,由等差数列的通项公式得,等差数列通项公式的推广,思 考,1,练习:已知等差数列,a,n,中,,a,3,=9,a,9,=3,求,a,12,a,3n,.,解法一,:,依题意得:,a,1,+2d=9,a,1,+8d=3,解之得,a,1,=11,d=-1,这个数列的通项公式是:,a,n,=11-(n-1)=12-n,故,a,12,=0,a,3n,=12 3 n.,等 差 中项 的 定 义,思 考,2,在如下的两个数之间,插入一个什么数后这三个数就会成为一个等差数列:,(,1,),2,,,(),,,4,(,2,),-12,,,(),,,0,3,-6,如果在,a,与,b,中间插入一个数,A,,使,a,,,A,,,b,成等差数列,那么,A,叫做,a,与,b,的,等差中项,。,(,1,)在等差数列,a,n,中,是否有,(,2,)在数列,a,n,中,如果对于任意的正整数,n,(,n2,),都有,那么数列,a,n,一定是等差数列吗?,思 考,3,等差数列的判定方法,等差数列的通项及图象特征,思 考,4,解析,:,结论,:,首项是,1,,公差是,2,的无穷等差数列的通项公式为,a,n,2n-1,相应的图象是直线,y=2x-1,上均匀排开的无穷多个孤立的点,如右图,例如,:,如何判断一个数列为等差数列,思 考,5,已知等差数列,2,,,4,,,6,,,8,,,10,12,,,14,,,16,,,思 考,6,性质,:设 若 则,已知等差数列,2,,,4,,,6,,,8,,,10,12,,,14,,,16,,,思 考,7,等差数列性质,等差数列性质的推论,练习,3,:,在等差数列,a,n,中,若,a,3,50,,,a,5,30,,则,a,7,_.,10,练习,1,:,如果数列,a,n,是等差数列,则,(,),B,A,a,1,a,8,a,4,a,5,B,a,1,a,8,a,4,a,5,D,a,1,a,8,a,4,a,5,练习,2,:,(201,0,年重庆,),在等差数列,a,n,中,,a,1,a,9,10,,则,),A,a,5,的值为,(,A,5,C,8,B,6,D,10,例,2,:,在等差数列,a,n,中,,(1),已知,a,2,a,3,a,23,a,24,48,,求,a,13,;,(2),已知,a,2,a,3,a,4,a,5,34,,,a,2,a,5,52,,求公差,d,.,2,n,3,则此数列的通项,a,n,为,(),A,2,n,5,C,2,n,1,B,2,n,3,D,2,n,1,2,数列,a,n,为等差数列,,a,2,与,a,6,的等差中项为,5,,,a,3,与,a,7,的等差中项为,7,,则数列的通项,a,n,为,_,【,变式与拓展,1,】,1,已知等差数列,a,n,的前,3,项依次为,a,1,,,a,1,2,a,3,,,B,【,变式与拓展,2,】,3,(2010,年全国,),如果在,等差数列,a,n,中,,a,3,a,4,a,5,12,,,那么,a,1,a,2,a,7,(,),C,A,14,B,21,C,28,D,35,4,已知数列,a,n,是等差数列,若,a,1,a,5,a,9,a,13,a,17,117,,,求,a,3,a,15,的值,解:,a,1,a,17,a,5,a,13,,,a,1,a,5,a,9,a,13,a,17,(,a,1,a,17,),(,a,5,a,13,),a,9,a,9,117.,a,3,a,15,2,a,9,2,117,234.,
展开阅读全文