资源描述
单击此处编辑母版文本样式,二级排查,三级排查,一级排查,专题三三角函数、三角恒等变换与解三角形,第,1,讲三角函数与三角恒等变换,从近三年的高考题如,2011,广东,16,2012,四川,18,2013,广东,16,等预测,2014,年高考命题中对三角函数的求值与恒等变形的考查仍是重点,此类题目主要考查同角三角函数的基本关系式三角函数的诱导公式及利用三角公式恒等变形的技能及基本运算能力,解决此类题目的关键是正确分析三角函数的差异,利用有关公式建立关系,进而活用公式,转化差异,解决问题例,1,是给值求值问题,关键是分析已知式与待求式之间的差异,找出它们之间的联系,求出待求式的值,三角函数的求值与恒等变形,从近三年的高考题如,2011,江苏,9,2012,四川,18,2013,四川,5,等预测三角函数图象变换及函数,y,A,sin(,x,),的解析式的求法仍是,2014,年高考命题的重点、热点解决此类问题的关键是深入理解三角函数图象的变换及用待定系数法求解函数,y,A,sin(,x,),的解析式例,2,是根据所给函数的图象求解参数,A,、,、,进而得函数关系式,进一步利用三角函数的变换以及三角函数的求值得解,三角函数图象变换及函数,y,A,sin(,x,),的解析式,从近三年的高考试题如,2011,北京,15,2012,安徽,16,2013,天津,15,等预测对三角函数图象与性质的考查仍是,2014,年高考命题的热点,此类题目主要侧重对图象和性质综合应用的考查,且对这部分内容的考查常考常新,解决的关键是充分运用数形结合的思想,把图象和性质结合起来例,3,主要考查三角变换能力及三角函数性质图象的灵活应用,三角函数图象与性质的综合应用,批阅笔记,1.,本,题求解中,灵活运用了二倍角的余弦公式,两角和的正、余弦公式,还引入辅助角,技巧性强,并考查正余弦函数的性质,是历年的重点,2,本题易错点:,(1),想不到引入辅助角;,(2),在求,g,(,x,0,),时,忽视讨论,k,的奇偶性,三角函数与其他知识的交汇问题,
展开阅读全文