BasicApplicationsofIntegralEquationsinElectromagnetics在电磁学中的积分方程的基本应用

上传人:e****s 文档编号:252660508 上传时间:2024-11-19 格式:PPT 页数:17 大小:373KB
返回 下载 相关 举报
BasicApplicationsofIntegralEquationsinElectromagnetics在电磁学中的积分方程的基本应用_第1页
第1页 / 共17页
BasicApplicationsofIntegralEquationsinElectromagnetics在电磁学中的积分方程的基本应用_第2页
第2页 / 共17页
BasicApplicationsofIntegralEquationsinElectromagnetics在电磁学中的积分方程的基本应用_第3页
第3页 / 共17页
点击查看更多>>
资源描述
2003 SURE Program,Basic Applications of Integral Equations in Electromagnetics,Nathaniel Burt,Kansas State University,Advisor:Professor Chalmers M.Butler,Basic Applications of Integral Equations,Background-What is an Integral Equation?,A Simple Electrostatic Application,Several Electrodynamic Applications,Thin-wire scatterer/antenna problem and associated integro-differential equation,Conclusions and Future Work,Background-What is an Integral Equation?,-limits determined by physical geometry,-unknown function to be determined,-known“kernel(also called a Greens Function),-known forcing function,An Approximation Technique,Difficulty,:possesses infinite number of unknowns,Solution,:,discretize,using series of N weighted pulses,Approximation reduces problem to solving for N unknowns,Further Details of Approximation Technique,xm takes on N unique values within(a,b)interval,yielding N equations,These“match points(xm)lie at centers of pulse functions,N summations of N terms form an NxN“impedance matrix having elements,Recalling that,and using the piecewise constant,approximation of u(x),Further Details of Approximation Technique,Unknown U,N,easily found using Gaussian elimination,Recall piecewise constant approximation of,u(x,),Charged Strip of Infinite Length(electrostatic),If strip is slotted,voltage,v(x,)can vary over the surface,Kernel is analytically,integrable,yielding matrix elements,Solving for column vector ,one easily obtains the approximated charge per unit,lenth,q(x,).,Charge Density per Unit Length on an Infinite Strip,V(x)=1,N=40,V(x)=x,N=20,w=1 m,-w,-w,w,w,Simple Electrodynamic Applications TMExcitation of Bodies Infinite in One Dimension,in which,H,0,(2),is a Hankel function of 0th order,2nd kind,In general,Also,Because must be zero everywhere,Scattered E-field is seen to be,On a PEC,We arrive at a generalized 2-D TM-incidence equation:,TM Excitation of a Conducting Strip,Specializing 2D TM excitation equation to a strip,we have,For 2D,electrodynamic,IEs,utilizing scatterer method,TM Excitation of More Complex Cylinders,Two more complex cases of 2-D TM excitation were investigated,Bent Strip(PEC),Infinite Cavity andInfinite Slot in PEC,Slot must be entirely above cavity,Accomodates,any cavity geometry,Restrictions,Approximation of Geometries for 2-D Cylinders,N=250,Approximating angular geometries using N points is simple,Smoother contours require more innovative geometry approximations,Goal:approximate contour as accurately as possible given N points,N=500,9 m,PEC Plane(L to R),y,Asymmetrical Slotted Cavity Solution,Trough Walls(CCW),-9 m,0.9 m,(0.05,0.9)m,(-0.15,0.9)m,0.9 m,x,y,Thin-Wire Scatterer/Antenna,Rather than using rectangular pulses,we represent I on the PEC in a piecewise linear fashion.,When,I(z,)in the second integral is differentiated,it becomes a series of pulses,Solution of Thin-Wire Integro-Differential Equation,Results of Solution Procedure for Thin Wire,One Wavelength Scatterer,Conclusions and Future Work,Gained a solid understanding of the fundamentals of formulating and numerically solving applied integral equations,Will most likely work with Professor Butler during the Fall semester to investigate effects of a gap capacitance on monopole characteristics like input impedance,radiation pattern,and bandwidth,Special thanks to Professor Butler and to the graduate students in Computational,Electromagnetics,especially Mike,Lockard,and,Jeremy,Rudbeck,
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 商业管理 > 商业计划


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!