资源描述
单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,第二课时等差数列的性质,第二课时等差数列的性质,1进一步了解等差数列的项与序号之间的规律,2理解等差数列的性质,3掌握等差数列的性质及其应用,4掌握等差中项的概念与应用.,1进一步了解等差数列的项与序号之间的规律,1灵活应用等差数列的性质,求数列中的项(或通项)(重点,难点),2利用等差中项及性质设元或列方程解题(重点),3常与函数、方程结合命题,三种题型均可出现,多为中低档题.,1灵活应用等差数列的性质,求数列中的项(或通项)(重点,难,等差数列的性质第二课时课件,1等差数列的定义,如果一个数列从第2项起,每一项减去它的前一项所得的差等于同一常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母,d,表示,2等差数列的通项公式为,a,n,a,1,(,n,1),d,,,a,n,a,m,(,n,m,),d,(,m,,,n,N,),3若数列,a,n,的通项公式为,a,n,3,n,1,则,a,1,a,6,23,,a,2,a,5,23,,a,3,a,4,23.你能看出有什么规律吗?,1等差数列的定义,1,等差数列增减性,对于数列,a,n,a,1,(,n,1),d,(1)当,d,0时,,a,n,为,;,(2)当,d,0时,,a,n,为,;,(3)当,d,0时,,a,n,为,递增数列,递减数列,常数列,1等差数列增减性递增数列递减数列常数列,2,等差中项,如果在,a,与,b,中间插入一个数,A,,使,,那么,A,叫作,a,与,b,的等差中项,且,A,3,等差数列的其它常用性质,a,,,A,,,b,成等差数列,性质1,若,a,n,为等差数列,且,k,l,m,n,(,k,,,l,,,m,,,n,N,),则,a,k,a,l,性质2,若,a,n,是等差数列,则2,a,n,a,n,1,a,n,1,a,1,a,n,a,2,a,3,性质3,若,a,n,,,b,n,分别是以,d,1,,,d,2,为公差的等差数列,,则,pa,n,qb,n,是以,为公差的等差数列,性质4,若,a,n,是等差数列,则,a,k,,,a,k,m,,,a,k,2,m,,,(,k,,,m,N,)组成公差为,的等差数列,a,m,a,n,a,n,1,a,n,2,pd,1,qd,2,md,2等差中项a,A,b成等差数列性质1若an为等差数列,,1下列说法中,正确的是(),A若,a,n,是等差数列,则|,a,n,|也是等差数列,B若|,a,n,|是等差数列,则,a,n,也是等差数列,C若存在自然数,n,使2,a,n,1,a,n,a,n,2,,则,a,n,是等差数列,D若,a,n,是等差数列,则对任意正整数,n,都有2,a,n,1,a,n,a,n,2,答案:,D,等差数列的性质第二课时课件,2若,a,n,是等差数列,且,a,1,a,4,a,7,45,,a,2,a,5,a,8,39,则,a,3,a,6,a,9,(),A9B20,C9.5 D33,解析:,方法一:,a,1,a,4,a,7,45,3,a,4,45,又,a,2,a,5,a,8,39,3,a,5,39,d,a,5,a,4,13152,a,3,a,6,a,9,3,a,6,3(,a,5,d,)33,故选D.,2若an是等差数列,且a1a4a745,a2a,方法二:,a,n,是等差数列,,a,1,a,4,a,7,,,a,2,a,5,a,8,,,a,3,a,6,a,9,也成等差数列,首项为45,公差为39456,,a,3,a,6,a,9,39633.,答案:,D,3方程,x,2,6,x,10的两根的等差中项为_,答案:,3,4在等差数列,a,n,中,,a,4,a,5,15,,a,7,12,则,a,2,_.,答案:,3,方法二:an是等差数列,,5在等差数列,a,n,中:,(1),a,2,a,3,a,10,a,11,48,求,a,6,a,7,;,(2),a,1,a,4,a,8,a,12,a,15,2,求,a,3,a,13,;,(3),a,3,a,11,10,求,a,2,a,4,a,15,.,解析:,(1),a,2,a,11,a,3,a,10,a,6,a,7,,,而,a,2,a,3,a,10,a,11,48,,2(,a,6,a,7,)48,得,a,6,a,7,24.,5在等差数列an中:,(2),a,1,a,15,a,4,a,12,2,a,8,.,而,a,1,a,15,(,a,4,a,12,a,8,)2,,即2,a,8,3,a,8,2.,a,8,2.,a,3,a,13,2,a,8,4.,(3),a,3,a,11,2,a,7,10,,a,7,5.,又,a,2,a,4,a,15,a,7,a,7,a,7,3,a,7,15.,a,2,a,4,a,15,15.,(2)a1a15a4a122a8.,等差数列的性质第二课时课件,等差数列性质的应用,(1)在等差数列,a,n,中,,a,1,a,4,a,7,15,,a,2,a,4,a,6,45,求数列的通项公式;,(2)设,a,n,为等差数列,若,a,3,a,4,a,5,a,6,a,7,450,,求,a,2,a,8,.,等差数列性质的应用,(1)先利用等差数列的性质转化为求,a,2,、,a,6,,再求出首项,a,1,和公差,d,,得出通项公式;,(2)既可以先求,a,5,,也可以通过首项与公差求解,(1)先利用等差数列的性质转化为求a2、a6,再求出首项a1,解题过程,(1),a,1,a,7,2,a,4,a,2,a,6,,,a,1,a,4,a,7,3,a,4,15.,a,4,5,,a,2,a,6,10,且,a,2,a,6,9.,a,2,,,a,6,是方程,x,2,10,x,90的两根,若,a,2,1,,a,6,9,则,d,2,,a,n,2,n,3;,若,a,2,9,,a,6,1,则,d,2.,a,n,132,n,.,故,a,n,2,n,3或,a,n,132,n,.,解题过程(1)a1a72a4a2a6,,(2),方法一:,a,3,a,7,a,4,a,6,2,a,5,a,2,a,8,,,a,3,a,4,a,5,a,6,a,7,5,a,5,450.,a,5,90,,a,2,a,8,2,a,5,180.,方法二,:,因为,a,n,为等差数列,设首项为,a,1,,公差为,d,,,a,3,a,4,a,7,a,1,2,d,a,1,3,d,a,1,6,d,5,a,1,20,d,,,即5,a,1,20,d,450,,a,1,4,d,90,,a,2,a,8,a,1,d,a,1,7,d,2,a,1,8,d,180.,(2)方法一:a3a7a4a62a5a2a8,,题后感悟,求等差数列的通项公式,必须求出首项,a,1,与公差,d,,为此,利用等差数列的性质,转化为等差数列的两项的方程组求解.等差数列的项与项数有着密切的联系,由,m,n,k,l,2,w,可得,a,m,a,n,a,k,a,l,2,a,w,,在解决等差数列的有关问题中应用非常简便,题后感悟求等差数列的通项公式,必须求出首项a1与公差d,1在等差数列,a,n,中,,(1)已知,a,2,a,3,a,23,a,24,48,求,a,13,;,(2)已知,a,2,a,3,a,4,a,5,34,,a,2,a,5,52,求公差,d,.,解析:,(1)根据已知条件,a,2,a,3,a,23,a,24,48,得,4,a,13,48,,a,13,12.,等差数列的性质第二课时课件,等差数列的性质第二课时课件,等差数列的性质第二课时课件,等差数列的性质第二课时课件,等差数列的性质第二课时课件,题后感悟,(1)到目前为止,判断一个数列,a,n,为等差数列的方法有:,定义法,即,a,n,1,a,n,d,;,通项公式法,即,a,n,An,B,;,等差中项法(无穷数列),2,a,n,a,n,1,a,n,1,(,n,2,且,n,N,),(2)要证三个数,a,,,b,,,c,成等差数列,只需证2,b,a,c,即可,若已知三个数,a,,,b,,,c,成等差数列,则有2,b,a,c,.,题后感悟(1)到目前为止,判断一个数列an为等差数,等差数列的性质第二课时课件,等差数列的性质第二课时课件,(1)三个数成等差数列,和为6,积为24,求这三个数;,(2)四个数成递增等差数列,中间两数和为2,首末两项的积为8,求这四个数,等差数列的性质第二课时课件,策略点睛,策略点睛,规范作答,(1),方法一:,设等差数列的等差中项为,a,,公差为,d,,则这三个数分别为,a,d,,,a,,,a,d,,,依题意,3,a,6且,a,(,a,d,)(,a,d,)24,,所以,a,2,代入,a,(,a,d,)(,a,d,)24,,化简得,d,2,16,于是,d,4,,故这三个数为2,2,6或6,2,2.,方法二:,设首项为,a,,公差为,d,,这三个数分别为,a,,,a,d,,,a,2,d,,,依题意,3,a,3,d,6且,a,(,a,d,)(,a,2,d,)24,,所以,a,2,d,,代入,a,(,a,d,)(,a,2,d,)24,,得2(2,d,)(2,d,)24,4,d,2,12,,即,d,2,16,于是,d,4,这三个数为2,2,6或6,2,2.,规范作答(1)方法一:设等差数列的等差中项为a,公差为,(2),方法一:,设这四个数为,a,3,d,,,a,d,,,a,d,,,a,3,d,(公差为2,d,),,依题意,2,a,2,且(,a,3,d,)(,a,3,d,)8,,即,a,1,,a,2,9,d,2,8,,d,2,1,,d,1或,d,1.,又四个数成递增等差数列,,所以,d,0,,d,1,,故所求的四个数为2,0,2,4.,(2)方法一:设这四个数为a3d,ad,ad,a3d,即1,d,2,8,,化简得,d,2,4,所以,d,2或2.,又四个数成递增等差数列,,所以,d,0,所以,d,2,故所求的四个数为2,0,2,4.,等差数列的性质第二课时课件,题后感悟,利用等差数列的定义巧设未知量,从而简化计算一般地有如下规律:当等差数列,a,n,的项数,n,为奇数时,可设中间一项为,a,,再用公差为,d,向两边分别设项:,a,2,d,,,a,d,,,a,,,a,d,,,a,2,d,,;当项数为偶数项时,可设中间两项为,a,d,,,a,d,,再以公差为2,d,向两边分别设项:,a,3,d,,,a,d,,,a,d,,,a,3,d,,这样可减少计算量,题后感悟利用等差数列的定义巧设未知量,从而简化计算一,3已知四个数依次成等差数列,且四个数的平方和为94,首尾两数之积比中间两数之积少18,求此四数,解析:,设所求四个数为,a,3,d,,,a,d,,,a,d,,,a,3,d,依题意可得,,等差数列的性质第二课时课件,等差数列的性质第二课时课件,1,等差数列通项公式的推广,由等差数列,a,n,的通项公式,a,n,a,1,(,n,1),d,,容易得到,a,n,a,m,(,n,m,),d,,这可以看作等差数列通项公式的推广公式,事实上,,a,m,(,n,m,),d,a,1,(,m,1),d,(,n,m,),d,a,1,(,n,1),d,a,n,.,等差数列的性质第二课时课件,等差数列的性质第二课时课件,3,等差数列的,“,子数列,”,(1)在公差为,d,的等差数列,a,n,中,可以有规律的选择出某些项,使它们组成新的等差数列如数列,a,2,n,,,a,2,n,1,,,a,n,a,n,1,,,a,n,a,n,1,,,a,1,a,2,a,3,,,a,4,a,5,a,6,,,a,7,a,8,a,9,,等都是等差数列,公差分别为2,d,2,d,2,d,0,9,d,.,(2)若,k,n,成等差数列,则,ak,n,也成等差数列,这就是说,若等差数列,a,n,中项数成等差数列,则对应的项也成等差数列,(3)若,a,n,、,b,n,为等差数列,则,a,n,k,、,ka,n,(,k,0)、,a,n,b,n,仍为等差数列,公差分别为,d,,,kd,,,d,1,d,2,.,3等差
展开阅读全文