BeaverCreekPotteryExampleSensitivityAnalysis(1of4)海狸溪陶器的例子的敏感性分析(1的4)

上传人:e****s 文档编号:252475095 上传时间:2024-11-16 格式:PPT 页数:39 大小:935KB
返回 下载 相关 举报
BeaverCreekPotteryExampleSensitivityAnalysis(1of4)海狸溪陶器的例子的敏感性分析(1的4)_第1页
第1页 / 共39页
BeaverCreekPotteryExampleSensitivityAnalysis(1of4)海狸溪陶器的例子的敏感性分析(1的4)_第2页
第2页 / 共39页
BeaverCreekPotteryExampleSensitivityAnalysis(1of4)海狸溪陶器的例子的敏感性分析(1的4)_第3页
第3页 / 共39页
点击查看更多>>
资源描述
*,*,Click to edit Master title style,Chapter 3-Linear Programming:Computer Solution and Sensitivity Analysis,Click to edit Master text styles,Second level,Third level,Fourth level,Fifth level,200,7,/0,8,Sami Fethi,EMU,All Right Reserved,.,Operations Research,Ch,3,:,Computer Solution and Sensitivity analysis,Department of Business Administration,FALL 200,7,-0,8,Management Science,by,Asst.Prof.Sami Fethi,2007 Pearson Education,1,Chapter Topics,Standard form,Sensitivity Analysis,Dual Problem,Example Problems,2,Linear Programming Problem:Standard Form,Standard form requires all variables in the constraint equations to appear on the left of the inequality(or equality)and all numeric values to be on the right-hand side.,Examples:,(Equation),x,3,x,1,+x,2,must be converted to x,3,-x,1,-x,2,0,x,1,/(x,2,+x,3,),2 becomes x,1,2(x,2,+x,3,),and then x,1,-2x,2,-2x,3,0,3,Linear Programming Problem:Standard Form,Models are also transformed into,Standard form.,Examples:,(model),Having defined the profit or cost function as well as constraints functions within the system,eqn,standard form can be formulated as follows,:,Z=12,x,1,+16,x,2,Subject to:3x,1,+2,x,2,500,4x,1,+5,x,2,800,x,1,x,2,0,Standard form,:,4,Beaver Creek Pottery Example,Sensitivity Analysis,(1 of 4),Sensitivity analysis determines the effect on the optimal solution of changes in parameter values of the objective function and constraint equations.,Changes may be reactions to anticipated uncertainties in the parameters or to new or changed information concerning the model.,5,Maximize Z=$40 x,1,+$50 x,2,subject to:1x,1,+2x,2,40,4x,2,+3x,2,120,x,1,x,2,0,Figure 3.1,Optimal Solution Point,Beaver Creek Pottery Example,Sensitivity Analysis,(2 of 4),6,Maximize Z=$100 x,1,+$50 x,2,subject to:1x,1,+2x,2,40,4x,2,+3x,2,120,x,1,x,2,0,Figure 3.2,Changing the x,1,Objective Function Coefficient,Beaver Creek Pottery Example,Change x,1,Objective Function Coefficient(3 of 4),7,Maximize Z=$40 x,1,+$100 x,2,subject to:1x,1,+2x,2,40,4x,2,+3x,2,120,x,1,x,2,0,Figure 3.3,Changing the x,2,Objective Function Coefficient,Beaver Creek Pottery Example,Change x,2,Objective Function Coefficient(4 of 4),8,The sensitivity range for an objective function coefficient is the range of values over which the current optimal solution point will remain optimal.,The sensitivity range for the x,i,coefficient is designated as c,i.,Objective Function Coefficient,Sensitivity Range(1 of 3),9,objective function Z=$40 x,1,+$50 x,2,sensitivity range for:,x,1,:25,c,1,66.67 x,2,:30,c,2,80,Figure 3.4,Determining the Sensitivity Range for c,1,Objective Function Coefficient,Sensitivity Range for c,1,and c,2,(2 of 3),10,Minimize Z=$6x,1,+$3x,2,subject to:,2x,1,+4x,2,16,4x,1,+3x,2,24,x,1,x,2,0,sensitivity ranges:,4,c,1,0,c,2,4.5,Objective Function Coefficient,Fertilizer Cost Minimization Example(3 of 3),Figure 3.5,Fertilizer Cost Minimization Example,11,Changes in Constraint Quantity Values,Sensitivity Range(1 of 4),The sensitivity range for a right-hand-side value is the range of values over which the quantitys value can change without changing the solution variable mix,including the slack variables.,12,Changes in Constraint Quantity Values,Increasing the Labor Constraint(2 of 4),Maximize Z=$40 x,1,+$50 x,2,subject to:1x,1,+2x,2,40,4x,2,+3x,2,120,x,1,x,2,0,Figure 3.6,Increasing the Labor Constraint Quantity,13,Changes in Constraint Quantity Values,Sensitivity Range for Labor Constraint(3 of 4),Sensitivity range for:,30,q,1,80 hr,Figure 3.7,Determining the Sensitivity Range for Labor Quantity,14,Changes in Constraint Quantity Values,Sensitivity Range for Clay Constraint(4 of 4),Sensitivity range for:,60,q,2,160 lb,Figure 3.8,Determining the Sensitivity Range for Clay Quantity,15,Changing individual constraint parameters,Adding new constraints,Adding new variables,Other Forms of Sensitivity Analysis,Topics(1 of 4),16,Other Forms of Sensitivity Analysis,Changing a Constraint Parameter(2 of 4),Maximize Z=$40 x,1,+$50 x,2,subject to:1x,1,+2x,2,40,4x,2,+3x,2,120,x,1,x,2,0,Figure 3.9,Changing the x,1,Coefficient in the Labor Constraint,17,Adding a new constraint to Beaver Creek Model:0.20 x,1,+0.10 x,2,5 hours for packaging Original solution:24 bowls,8 mugs,$1,360 profit,Exhibit 3.17,Other Forms of Sensitivity Analysis,Adding a New Constraint(3 of 4),To find out Optimal solution coordinates,we,u,se,t,he both constraints.,x,1,=,40,-,2x,2,4,(,40,-,2x,2,),+3x,2,=,120,160-8,x,2,+3x,2,=,120,-5,x,2,=-40,X,2,=,8,x,1,=,2,4,Z=$40,(24),+$50,(8),Z,=,$,1360 max daily profit possible,18,Adding a new variable to the Beaver Creek model,x,3,a third product,cups,Maximize Z=$40 x,1,+50 x,2,+30 x,3,subject to:,x,1,+2x,2,+1.2x,3,40 hr of labor,4x,1,+3x,2,+2x,3,120 lb of clay,x,1,x,2,x,3,0,Solving model shows that change has no effect on the original solution(i.e.,the model is not sensitive to this change).,Other Forms of Sensitivity Analysis,Adding a New Variable(4 of 4),19,Defined as the marginal value of one additional unit of resource.,The se
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 商业管理 > 商业计划


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!