资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,等差数列的性质,等差数列的性质,1,或,a,n,+1,=,a,n,+d,等差数列,AAAAAAAAAAAAA,每一项与,它前一项的,差,如果一个数列从第2项起,,等于同一个常数.,.,.,【,说明,】,数列,a,n,为等差数列,a,n,+1,-,a,n,=d,d,=,a,n,+1,-,a,n,公差是,唯一,的,是一个常数。,等差数列各项对应的点都在同一条直线上.,知识回顾,a,n,=a,1,+,(,n-,1),d,或an+1=an+d等差数列 AAAAAAAAAAAAA,2,一、判定题:下列数列是否是等差数列?,.,9,7,5,3,,-2n+11,;,.,-,1,11,23,35,,12n-13,;,.,1,2,1,2,;,.,1,2,4,6,8,10,;,.,a,a,a,a,,,a,,;,:,复习巩固,一、判定题:下列数列是否是等差数列?.9,7,5,3,(1)等差数列8,5,2,的第5项是,AA,AAAAAAA,(2)等差数列-5,-9,-13,的第n项是,A,-4,a,n,=-5+(n-1),.,(-4),10,【,说明,】,在等差数列,a,n,的通项公式中,a,1,、,d,、,a,n,、,n,任知,三,个,,可求出,另外一个,二、填空题:,简言之,“,知三求四,”,(3)已知,a,n,为等差数列,,a,1,=3,,d,=2,,a,n,=21,则,n,=,(1)等差数列8,5,2,的第5项是 AA AA,4,(1)数列:-2,0,2,4,6,8,10,,1,2,3,4,5,6,7,8,9,10,1,2,3,4,5,6,7,8,9,10,0,P,39,例4,等差数列的图象1,(1)数列:-2,0,2,4,6,8,10,1234567,5,(2)数列:7,4,1,-2,,1,2,3,4,5,6,7,8,9,10,1,2,3,4,5,6,7,8,9,10,0,等差数列的图象2,(2)数列:7,4,1,-2,12345678910123,6,(1)数列:4,4,4,4,4,4,4,,1,2,3,4,5,6,7,8,9,10,1,2,3,4,5,6,7,8,9,10,0,等差数列的图象3,(1)数列:4,4,4,4,4,4,4,123456789,7,例1,已知数列的通项公式为a,n,=pn+q,其中p,q是常数,且p0,那么这个数列是否一定是等差数列吗?如果是,其首项与公差是什么?,分析:由等差数列的定义,要判定是不是等差数列,只要看,a,n,a,n-1,(n2),是不是一个与,n,无关的常数就行了,解:取数列中的任意相邻两项a,n-1,与a,n,(n2),a,n,a,n-1,=(pn+q)-p(n-1)+q,=pn+q-(pn-p+q),=p,它是一个与n无关的常数,所以是等差数列,且公差是p,在通项公式中令n=1,得a,1,=p+q,所以这个,等差数列的首项是p+q,公差是p,等差数列的性质,P,38,2,3,例1 已知数列的通项公式为an=pn+q,其中p,q是常数,,8,在一个数列中,从第2项起,每一项(有穷数列的末项除外)都是它前一项与后一项的等差中项.,如果a,A,b成等差数列,那么A叫a与b的等差中项.,如:数列:1,3,5,7,9,11,13,中,即:,P,37,例5,等差数列的性质,在一个数列中,从第2项起,每一项(有穷数列的末项除外)都是它,9,思考题:已知三个数成等差数列的和是12,积是48,求这三个数.,设数技巧,已知三个数成等差 数列,且和已知时常,利用对称性,设三数为:,a-d,a,a+d,四个数怎么设?,思考题:已知三个数成等差数列的和是12,积是48,求这三个数,10,P,39,6,7,P396,7,11,在等差数列,中,,为公差,若,且,求证:,证明:,设首项为,,则,例2.,等差数列的性质,P,39,11,在等差数列中,为公差,若且求证:证明:设首项为,则例,12,a,m,+,a,n,=,a,p,+,a,q,上面的命题中的等式两边有,相 同 数 目,的项,否则不成立。如,a,1,+,a,2,=,a,3,成立吗?,【,说明,】,3.更一般的情形,,a,n,=,,d,=,1.,a,n,为等差数列,2.,a,、,b,、,c,成等差数列,a,n,+1,-,a,n,=d,a,n,+1,=a,n,+d,a,n,=,a,1,+,(,n-,1),d,a,n,=,kn +b,(k,、,b,为常数),a,m,+,(,n,-,m,),d,b为a、c 的等差中项,2,b=a+c,4.在等差数列,a,n,中,由,m+n=p+q,注意:上面的命题的逆命题,是不一定成立,的;,等差数列的性质,P,39,8,10,5.在等差数列,a,n,中,a,1,+,a,n,a,2,+,a,n-,1,a,3,+,a,n-,2,=,=,=,am+an=ap+aq上面的命题中的等式两边有 相 同,13,例2.,在等差数列,a,n,中,(1)已知,a,6,+,a,9,+,a,12,+,a,15,=20,求,a,1,+,a,20,(2)已知,a,3,+,a,11,=10,求,a,6,+,a,7,+,a,8,(3)已知,a,4,+,a,5,+,a,6,+,a,7,=56,,a,4,a,7,=187,求,a,14,及公差,d,.,分析:由,a,1,+,a,20=,a,6,+,a,15,=,a,9,+,a,12,及,a,6,+,a,9,+,a,12,+,a,15,=20,可得,a,1,+,a,20,=10,分析:,a,3,+,a,11,=,a,6,+,a,8,=2,a,7,,又已知,a,3,+,a,11,=10,,a,6,+,a,7,+,a,8,=(,a,3,+,a,11,)=15,分析:,a,4,+,a,5,+,a,6,+,a,7,=56,a,4,+,a,7,=28 ,又,a,4,a,7,=187 ,解、得,a,4,=17,a,7,=11,a,4,=11,a,7,=17,或,d=,_,2或2,从而,a,14,=,_,3或31,例题分析,例2.在等差数列an中(2)已知 a3+a11=10,,14,1.等差数列,a,n,的前三项依次为,a,-6,2,a,-5,-3,a+,2,则,a,等于(),A,.-1,B,.1,C,.-2,D.2,B,2.在数列,a,n,中,a,1,=1,,a,n,=,a,n+,1,+4,则,a,10,=,2(2,a,-5)=(-3,a+2,)+(,a,-6,),提示1:,提示:,d=a,n+,1,a,n,=4,-35,3.,在等差数列,a,n,中,(1)若,a,59,=70,,a,80,=112,求,a,101,;,(2)若,a,p,=,q,,,a,q,=,p,(,pq,),求,a,p+q,d=,2,a,101,=154,d=,-1,a,p+q,=,0,课堂练习,1.等差数列an的前三项依次为 a-6,2a-5,-3,15,300 500,4,.,在等差数列,a,n,中,a,1,=83,,a,4,=98,则这个数列有,多少项在300到500之间?,d=,5,提示:,a,n,=78+5,n,n,=45,46,84,40,2.已知,a,n,为等差数列,若,a,10,=20 ,,d,=-1,求,a,3,?,1.若,a,12,=23,,a,42,=143,,a,n,=263,求,n,.,3.,三数成等差数列,它们的和为,12,,首尾二数的,积为,12,,求此三数.,d=,4,n,=72,a,3,=,a,10,+(3-10)d,a,3,=27,设这三个数分别为a-d a,a+d,则3a=12,a,2,-d,2,=12,6,4,2或2,4,6,研究性问题,300 5004.在,16,练习,梯子的最高一级宽33 cm,最低一级宽110 cm,中间,还有10级,各级的宽度成等差数列,计算中间各级的宽.,项数(上),1,2,3,4,5,6,7,8,9,10,11,12,数列的项,33,110,项数(下),12,11,10,9,8,7,6,5,4,3,2,1,分析:,解法一:用a,n,题中的等差数列,由已知条件,有,a,1,=33,a,12,=110 ,n=12,又a,12,=a,1,+(121)d即1103311d,所以 d=7,因此,,a,2,=33+7=40 a,3,=40+47 a,11,=96+7=103,答:梯子中间各级的宽从上到下依次是40cm、47cm、54cm、,61cm、68m、75cm、82cm、89cm、96cm、103cm.,练习 梯子的最高一级宽33 cm,最低一级宽110 cm,中,17,a,m,+,a,n,=,a,p,+,a,q,上面的命题中的等式两边有,相 同 数 目,的项,否则不成立。如,a,1,+,a,2,=,a,3,成立吗?,【,说明,】,3.更一般的情形,,a,n,=,,d,=,1.,a,n,为等差数列,2.,a,、,b,、,c,成等差数列,a,n,+1,-,a,n,=d,a,n,+1,=a,n,+d,a,n,=,a,1,+,(,n-,1),d,a,n,=,kn +b,(k,、,b,为常数),a,m,+,(,n,-,m,),d,b为a、c 的等差中项,2,b=a+c,4.在等差数列,a,n,中,由,m+n=p+q,注意:上面的命题的逆命题,是不一定成立,的;,等差数列的性质,5.在等差数列,a,n,中,a,1,+,a,n,a,2,+,a,n-,1,a,3,+,a,n-,2,=,=,=,am+an=ap+aq上面的命题中的等式两边有 相 同,18,前,100,个自然数的和:1+2+3+100=,;,前,n,个奇数的和:1+3+5+(2,n,-1)=,;,前,n,个偶数的和:2+4+6+2,n,=,.,思考题:,如何求下列和?,n,2,n,(,n,+1),前100个自然数的和:1+2+3+100=,19,二、学习新课,等差数列前,n,项和,S,n,=,=,.,=,an,2,+bn,a,、,b,为常数,S,n,=,a,1,+,a,2,+,a,3,+,a,n-,2,+,a,n-,1,+,a,n,(1),S,n,=,a,n,+,a,n-,1,+,a,n-,2,+,a,3,+,a,2,+,a,1,(2),(1)+(2)得,2S,n,=,n,(,a,1,+,a,n,),二、学习新课等差数列前n 项和Sn=,20,【,说明,】,推导等差数列的前,n,项和公式的方法叫,;,等差数列的前,n,项和公式类同于,;,a,n,为等差数列,,这是一个关于,的,没有,的“,”,倒序相加法,梯形的面积公式,S,n,=,an,2,+bn,n,常数项,二次函数,(注意,a,还,可以是,0,),例1,已知数列,a,n,中S,n,=2,n,2,+3,n,,,求证:,a,n,是等差数列.,【说明】推导等差数列的前n项和公式的方法叫,21,等差数列,a,n,的首项为,a,1,,公差为,d,,项数为,n,,第,n,项为,a,n,,前,n,项和为S,n,,请填写下表:,三、课堂练习,a,1,d,n,a,n,s,n,5,10,10,-2,50,2550,-38,-10,-360,14.5,26,32,95,500,100,2,2,15,0.7,604.5,等差数列an的首项为a1,公差为d,项数为n,第n项为a,22,例2,如图,一个堆放铅笔的V形架的最下面一层放1支,铅笔,往上每一层都比它下面一层多放一支,最,上面一层放120支.这个V形架上共放着多少支铅笔?,例2 如图,一个堆放铅笔的V形架的最下面一层放1支,23,
展开阅读全文