高职高专机械类专业机械工程课件

上传人:3626209****147198... 文档编号:252001122 上传时间:2024-11-12 格式:PPTX 页数:29 大小:2.06MB
返回 下载 相关 举报
高职高专机械类专业机械工程课件_第1页
第1页 / 共29页
高职高专机械类专业机械工程课件_第2页
第2页 / 共29页
高职高专机械类专业机械工程课件_第3页
第3页 / 共29页
点击查看更多>>
资源描述
,高,职,高,专,机,械,类,专,业,机,械,工,程,高,职,高,专,机,械,类,专,业,机,械,工,程,制作:黄向裕,高,职,高,专,机,械,类,专,业,机,械,工,程,制作:黄向裕,高,职,高,专,机,械,类,专,业,机,械,工,程,制作:黄向裕,高,职,高,专,机,械,类,专,业,机,械,工,程,制作:黄向裕,高,职,高,专,机,械,类,专,业,机,械,工,程,制作:黄向裕,高,职,高,专,机,械,类,专,业,机,械,工,程,制作:黄向裕,高,职,高,专,机,械,类,专,业,机,械,工,程,制作:黄向裕,高,职,高,专,机,械,类,专,业,机,械,工,程,制作:黄向裕,高,职,高,专,机,械,类,专,业,机,械,工,程,制作:黄向裕,前面提到:各种形状的机件虽然复杂多样,但都是由一些简单的基本体经过叠加、切割或相交等形式组合而成的。那么,基本体被平面截切后的剩余部分,就称为截切体。两基本体相交后得到的立体,就叫相贯体。它们由于被截切或相交,会在表面上产生相应的截交线或相贯线。了解它们的性质及投影画法,将有助于我们对机件形状结构的正确分析与表达。,第4章 截切体与相贯体的投影,41 截切体,42 相贯体,43过渡线,44相贯线的简化画法,45截断体和相贯体的尺寸标注,前面提到:各种形状的机件虽然复杂多样,但都是,41 截切体,411截切体的有关概念及性质,412平面截切体,413曲面截切体,返回,41 截切体411截切体的有关概念及性质412平面,411截切体的有关概念及性质,如图所示,正六棱柱被平面截为两部分,其中用来截切立体的平面称为截平面;立体被截切后的部分称为截切体;立体被截切后的断面称为截断面;截平面与立体表面的交线称为截交线。,截交线具有以下基本性质:,返回,1.共有性 截交线是截平面与立体表面的共有线,既在截平面上,又在立体表面上,是截平面与立体表面共有点的集合。,2.封闭性 由于立体表面是有范围的,所以截交线一般是封闭的平面图形(平面多边形或曲线)。,411截切体的有关概念及性质 如图所示,正,由平面立体截切得到的截切体,叫平面截切体,作平面立体上的截交线方法:,(1)交点法:即先求出平面立体的各棱线与截平面的交点,然后将各点依次连接起来,即得截交线。,连接各交点有一定的原则:只有两点在同一个表面上时才能连接,可见棱面上的两点用实线连接,不可见棱面上的两点用虚线连接。,(2)交线法:即求出平面立体的各表面与截平面的交线。,412平面截切体,返回,由平面立体截切得到的截切体,叫平面截切体 作平面立体上的截交,棱柱上的截交线,【例4-1】如图a所示,求作五棱柱被正垂面Pv截断后的投影。,分析,截平面与五棱柱的五个侧棱面均相交,与顶面不相交,故截交线为五边形ABCDE。,作图,如图a所示,1)由于截平面为正垂面,故截交线的V面投影abcde已知;于是截交线的H面投影abcde亦确定;,2)运用交点法,依据“主左视图高平齐”的投影关系,作出截交线的W面投影abcde;,3)五棱柱截去左上角,截交线的H和W投影均可见。截去的部分,棱线不再画出,但有侧棱线未被截去的一段,在W投影中应画为虚线。,4)检查、整理、描深图线,完成全图,如图b所示。,棱柱上的截交线【例4-1】如图a所示,求作五棱柱被正垂面P,棱锥上的截交线,【例4-2】求作正垂面P截割四棱锥S-ABC所得的截交线。见图a。,分析,1)截平面P与四棱锥的四个棱面都相交,截交线是一个四边形;,2)截平面P是一个正垂面,其正面投影具有积聚性;,3)截交线的正面投影与截平面的正面投影重合,即截交线的正面投影已确定,只需求出水平投影。,作图,如图a所示,1)因为PV具有积聚性,所以PV与sa、sb、sc和sd的交点1、2、3和4即为空间点、和的正面投影;,2)利用从属关系,向下引铅垂线求出相应的点1、2、3和4;,3)四边形1234为截交线的水平投影。线段1234为截交线的正面投影。各投影均可见。,4)检查、整理、描深图线,完成全图,棱锥上的截交线【例4-2】求作正垂面P截割四棱锥S-ABC,带缺口的平面立体的投影,【例4-4】如图a所示,已知带有缺口的正六棱柱的V面投影,求其H面和W面投影,分析,1)从给出的V面投影可知,正六棱柱的缺口是由两个侧平面和一个水平面截割正六棱柱而形成的。只要分别求出三个平面与正六棱柱的截交线以及三个截平面之间的交线即可。,2)这些交线的端点的正面投影为已知,只需补出其余投影。,3)、四点是左边的侧平面与立体相交得到的点,、是右边的侧平面与立体相交得到的点,、两点为前后棱线与水平面相交得到上的点,其中直线、和、又分别是左右两侧平面与水平面相交所得的交线。,作图,如图a所示,1)利用棱柱各侧棱面的积聚性、点与直线的从属性及“主左视图高平齐”的投影关系依次作出各点的三面投影。,2)连接各点。将在同一棱面又在同一截平面上的相邻点的同面投影相连。,3)判别可见性。只有78、910交线不可见,画成虚线。,4)检查、整理、描深图线,完成全图,返回,带缺口的平面立体的投影 【例4-4】如图a所示,,413曲面截切体,由曲面立体截切得到的截切体,叫曲面截切体。,1圆柱上的截交线,平面与圆柱面相交,根据截平面与圆柱轴线相对位置的不同,所得的截交线有三种情况,(1)当截平面垂直于圆柱的轴线时,截交线为一个圆;,(2)当截平面倾斜于圆柱的轴线时,截交线为椭圆,此椭圆的短轴平行与圆柱的底圆平面,它的长度等于圆柱的直径;椭圆长轴与短轴的交点(椭圆中心),落在圆柱的轴线上,长轴的长度随截平面相对轴线的倾角不同而变化;,(3)当截平面经过圆柱的轴线或平行于轴线时,截交线为两条素线。,413曲面截切体由曲面立体截切得到的截切体,叫曲面截切体,高职高专机械类专业机械工程课件,【例4-5】如图a所示,求正垂面与圆柱的截交线。,分析,1)圆柱轴线垂直于H面,其水平投影积聚为圆。,2)截平面P为正垂面,与圆柱轴线斜交,交线为椭圆。椭圆的长轴平行于V面,短轴,垂直于V面。椭圆的V面投影成为一条直线,与PV重合。椭圆的H面投影,落在圆柱面的同面投影上而成为一个圆,故只需作图求出截交线的W面投影。,作图,如图a所示,1)求特殊点。这些点包括轮廓线上的点、特殊素线上的点、极限点以及椭圆长短轴的端点。,最左点(也是最低点)、最右点(也是最高点),最前点和最后点,它们分别是轮廓线上的点,又是椭圆长短轴的端点,可以利用投影关系,直接求出其水平投影和侧面投影。,2)求一般点。为了作图准确,在截交线上特殊点之间选取一些一般位置点。图中选取了、四个点,由水平投影5、6、7、8和正面投影 5、6、7、8,求出侧面投影5、6、7、8。,3)连点。将所求各点的侧面投影顺次光滑连接,即为椭圆形截交线的W面投影。,4)判别可见性。由图中可知截交线的侧面投影均为可见。,5)检查、整理、描深图线,完成全图,【例4-5】如图a所示,求正垂面与圆柱的截交线。分析作图,2圆锥上的截交线,当平面与圆锥截交时,根据截平面与圆锥轴线相对位置的不同,可产生五种不同形状的截交线,(1)当截平面垂直于圆锥的轴线时,截交线必为一个圆;,(2)当截平面倾斜于圆锥的轴线,并与所有素线相交时,截交线必为一个椭圆;,(3)当截平面倾斜于圆锥的轴线,但与一条素线平行时,截交线为抛物线;,(4)当截平面平形于圆锥的轴线,或者倾斜于圆锥的轴线但与两条素线平行时,截交线,必为双曲线;,(5)当截平面通过圆锥的轴线或锥顶时,截交线必为两条素线。,2圆锥上的截交线 当平面与圆锥截交时,根据截,表4-2 圆锥面上的截交线,表4-2 圆锥面上的截交线,【例4-6】如图a所示,已知圆锥的三面投影和正垂面P的投影,求截交线的投影及实形。,分析,1)因截平面P是正垂面,P面与圆锥的轴线倾斜并与所有素线相交,故截交线为椭圆;,2)PV面与圆锥最左最右素线的交点,即为椭圆长轴的端点、,即椭圆长轴平行于V面,椭圆短轴、垂直于V面,且平分、。,3)截交线的V面投影重合在PV上,H面投影、W面投影仍为椭圆,椭圆的长、短轴仍投影为椭圆投影的长、短轴。,作图,如图a所示,1)求长轴端点。在V面上,PV与圆锥的投影轮廓线的交点,即为长轴端点的V面投影1、4;、的H面投影1、4在水平中心线上,14就是投影椭圆的长轴;,2)求短轴端点。椭圆短轴、的投影5(6)必积聚在1、4的中点;过5(6)作纬圆求出水平投影5、6,之后求出56;,3)求最前、最后素线与P面的交点和。在PV与圆锥正面投影的轴线交点处得2、(3),向右得到其侧面投影2、3,向下向左得到2、3;,4)求一般点、。先在V面定出点7、(8),再用纬圆法求出7、8,并进一步求出7、8;,5)连接各点并判别可见性。在H面投影中依次连接各点,即得椭圆的H面投影;同理得出椭圆的W面投影。,6)求截面的实形(略)。,7)检查、整理、描深图线,完成全图,【例4-6】如图a所示,已知圆锥的三面投影和正垂面P的投影,【例4-7】如图4-8a所示,求作侧平面Q与圆锥的截交线。,作图,如图a所示,1)在QV与圆锥正面投影左边轮廓线的交点处,得到截交线最高点的投影3,进一步得到3、3;,2)在QV与圆锥底面正面投影的交点处,得到截交线最低点和的投影1、(2),进一步得到1、2、1、2;,3)用素线法求出一般点、的各投影;,4)顺次连接2-5-3-4-1;,5)各面投影均可见。,6)检查、整理、描深图线,完成全图,【例4-7】如图4-8a所示,求作侧平面Q与圆锥的截交线。,4带缺口的曲面立体的投影,【例4-8】如图a所示,给出圆柱切割体的正面投影和水平投影,补画出侧面投影。,作图,如图a所示,1)求特殊点。根据截平面和圆柱体的积聚性,截交线的正面投影、水平投影为已知,只需求出截交线的侧面投影。其中是椭圆长轴的一个端点,、是椭圆短轴的两个端点,他们在各轮廓线上,、是素线和椭圆的连接点,利用水平投影求出侧面投影。,2)求一般点。、是一般位置的点,用素线法求出其水平投影,进一步求出侧面投影。,3)判别可见性并连点。所有投影均可见。,4)检查、整理、描深图线,完成全图,4带缺口的曲面立体的投影 【例4-8】如图a,【例4-9】如图4-11a所示,求切割后圆锥的投影。,作图,如图a所示,1)求特殊点。、三点为R与圆锥表面相交的点;、三点为P与圆锥表面相交的点;同时,、和、又分别是为R与Q和P与Q相交的点。根据各点的正面投影先求出其水平投影,再求出其侧面投影。,2)本题不需要求一般点。,3)连点并判别可见性。所有点全部可见。,4)检查、整理、描深图线,完成全图,返回,【例4-9】如图4-11a所示,求切割后圆锥的投影。,42 相贯体,421相贯体的有关概念及性质,422立体表面的相贯线,返回,42 相贯体421相贯体的有关概念及性质422立体,两立体相交得到的立体,叫相贯体,两立体因相贯表面产生的交线称为相贯线,421相贯体的有关概念及性质,性质:,(1)相贯线是相交两立体表面共有的线,是两立体表面一系列共有点的集合,同时也是两立体表面的分界点。,(2)由于立体占有一定的空间范围,所以相贯线一般是封闭的空间曲线。,相贯线可见性的判断原则是:相贯线同时位于两个立体的可见表面上时,其投影才是可见的;否则就不可见。,返回,两立体相交得到的立体,叫相贯体,两立体因相,422立体表面的相贯线,1两曲面立体表面的交线,求相贯线的方法通常有以下两种:,第一种:积聚投影法相交两曲面体,如果有一个表面投影具有积聚性时,就可利用该曲面体投影的积聚性作出两曲面的一系列共有点,然后依次连成相贯线。,第二种:辅助平面法根据三面共点原理,作辅助平面与两曲面相交,求出两辅助截交线的交点,即为相贯点。,选择辅助平面的原则是:辅助截平面与两个曲面的截交线(辅助截交线)的投影都应是最简单易画的直线或圆。因此在实际应用中往往多采用投影面的平行面作为辅助截平面。,422立体表面的相贯线1两曲面立体表面的交线求相贯线的,【例4-11】如图a所示,求作两轴线正交的圆柱体的相贯线。,
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > PPT模板库


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!