资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,0,第九章 统 计,9.2.4 总体离散程度的估计,第九章 统 计9.2.4 总体离散程度的估计,1,(,1),众数,定义,:,一组数据中出现,次数最多,的数据,(,即频率分布最大值所对应的样本数据,),称为这组数据的众数,.,特征,:,一组数据中的众数可能不止一个,也可能没有,反映了该组数据的集中趋势,.,(2),中位数,定义,:,一组数据按从小到大,(,或从大到小,),的顺序排成一列,处于,最中间的一个数据,(,当数据个数是奇数时,),或,最中间两个数据的平均数,(,当数据个数是偶数时,),称为这组数据的中位数,.,特征,:,一组数据中的中位数是唯一的,反映了该组数据的集中趋势,.,在频率分布直方图中,中位数左边和右边的直方图的面积相等,.,(1)众数,2,(3),平均数,定义,:,一组数据的和与这组数据的个数的商,.,数据,x,1,x,2,x,n,的,特征,:,平均数对数据有,“,取齐,”,的作用,代表该组数据的平均水平,任何一个数据的改变都会引起平均数的变化,这是众数和中位数都不具有的性质,.,所以与众数、中位数比较起来,平均数可以反映出更多的关于样本数据全体的信息,但平均数受数据中极端值的影响较大,使平均数在估计总体时的可靠性降低,.,(3)平均数,3,1,、众数在样本数据的频率分布直方图中,就是最高矩形的中点的横坐标。,2,、,利用,频率分布直方图(频率分布表),,求样本的平均数、中位数和众数的近似估计,进而估计总体的平均数、中位数和众数,.,2,、在样本中,有,50,的个体小于或等于中位数,也有,50,的个体大于或等于中位数,,,因此,,在频率分布直方图中,中位数左边和右边的直方图的面积应该相等,由此,可以 估计,中位数的值。,3,、平均数是频率分布直方图的“重心”,.,是直方图的平衡点,.频率直方图中每个小,长,方形,的面积乘以小矩形底边中点的横坐标之和。,1、众数在样本数据的频率分布直方图中,就是最高矩形的中点的横,4,三,种数字特征的优缺点,三种数字特征的优缺点,5,样本的众数、中位数和平均数常用来表示样本数据的“中心值”,其中众数和中位数容易计算,不受少数几个极端值的影响,但只能表达样本数据中的少量信息,.,平均数代表了数据更多的信息,但受样本中每个数据的影响,越极端的数据对平均数的影响也越大,.,当样本数据质量比较差时,,使用众数、中位数或平均数描述数据的中心位置,,可能与实际情况产生较大的误差,难以反映样本数据的实际状况,,很多时候还不能使我们做出有效决策,.,因此,我们需要一个统计数字刻画样本数据的,离散程度,.,探究新知,样本的众数、中位数和平均数常用来表示样本数据的,6,方差,、标准差,1,.,思考,(1),平均数向我们提供了样本数据的重要信息,但是,平均数有时也会使我们作出对总体的片面判断,因为这个平均数掩盖了一些极端的情况,而这些极端情况显然是不能忽视的,.,因此,只用平均数还难以概括样本数据的实际状态,.,例,如,:,有两位射击运动员在一次射击测试中各射靶,10,次,每次命中的环数如下,:,甲,:7,8,7,9,5,4,9,10,7,4,乙,:9,5,7,8,7,6,8,6,7,7,如果你是教练,你应当如何对这次射击作出评价,?,7,如果你是教练,你应当如何对这次射击作出评价,?,甲、乙两人本次射击的平均成绩分别为多少环,?,他们的平均成绩一样吗,?,如果你是教练,你应当如何对这次射击作出评价?,8,难道这两个人的水平就没有什么差异了吗,?,你能作出这两人成绩的频率分布条形图来说明其水平差异在哪里吗,?,提示,频率分布条形图如下,:,从图上可以直观地看出,他们的水平还是有差异的,甲成绩比较分散,乙成绩相对集中,.,难道这两个人的水平就没有什么差异了吗?你能作出这两人成绩的,9,(2),现实中的总体所包含的个体数往往是很多的,总体的平均数与标准差是不知道的,.,如何,求得总体的平均数和标准差呢,?,提示,:,通常的做法是用样本的平均数和标准差去估计总体的平均数与标准差,.,这与前面用样本的频率分布来近似地代替总体分布是类似的,.,只要样本的代表性好,这样做就是合理的,也是可以接受的,.,(2)现实中的总体所包含的个体数往往是很多的,总体的平均数与,10,总体离散程度的估计ppt课件人教A版高中数学必修第二册,11,总体离散程度的估计ppt课件人教A版高中数学必修第二册,12,总体离散程度的估计ppt课件人教A版高中数学必修第二册,13,对,标准差和方差的理解,(1),样本标准差反映了各样本数据聚集于样本平均数周围的程度,标准差越小,表明各个样本数据在样本平均数周围越集中,;,反之,标准差越大,表明各样本数据在样本平均数的周围越分散,.,(2),若样本数据都相等,则,s=,0,.,(3),当样本的平均数相等或相差无几时,就要用样本数据的离散程度来估计总体的数字特征,而样本数据的离散程度,就由标准差来衡量,.,(4),数据的离散程度可以通过极差、方差或标准差来描述,.,极差反映了一组数据变化的最大幅度,它对一组数据中的极端值非常敏感,;,方差则反映了一组数据围绕平均数波动的大小,.,为了得到以样本数据的单位表示的波动幅度,通常用标准差,样本方差的算术平方根来描述,.,归纳总结,14,(5),标准差的大小不会越过极差,.,(6),方差、标准差、极差的取值范围为,0,+,),.,当标准差、方差为,0,时,样本各数据全相等,表明数据没有波动幅度,数据没有离散性,.,(7),因为方差与原始数据的单位不同,且平方后可能夸大了偏差的程度,所以虽然方差和标准差在刻画样本数据的分散程度上是一样的,但在解决实际问题时,一般采用标准差,.,(8),在实际问题中,总体平均数和总体标准差都是未知的,.,就像用样本平均数估计总体平均数一样,通常我们也用样本标准差去估计总体标准差,.,在随机抽样中,样本标准差依赖于样本的选取,具有随机性,.,(5)标准差的大小不会越过极差.,15,1.,判断,下列说法是否正确,正确的在后面的括号内打“,”,错误的打“,”,.,标准差、方差越大,数据的离散程度越大,;,标准差、方差越小,数据,的,离散程度越小,.,(,),若两组数据的方差一样大,则说明这两组数据都是相同的,.,(,),答案,:,做一做,1.判断下列说法是否正确,正确的在后面的括号内打“”,错误,16,2,.,对,划艇运动员甲、乙在相同的条件下进行了,6,次测试,测得他们每次的最大,速度,(,单位,:m/s),如下,:,甲,:27,38,30,37,35,31,乙,:33,29,38,34,28,36,根据以上数据,试判断他们谁更优秀,.,2.对划艇运动员甲、乙在相同的条件下进行了6次测试,测得他们,17,总体离散程度的估计ppt课件人教A版高中数学必修第二册,18,有关,平均数、方差的重要结论,1,.,思考,若,x,1,x,2,x,n,的方差是,s,2,则,ax,1,ax,2,ax,n,的方差是多少,?,提示,:,由,方差的定义知,ax,1,ax,2,ax,n,的方差是,a,2,s,2,.,2,.,填空,(1),若,x,1,x,2,x,n,的平均数是,则,mx,1,+a,mx,2,+a,mx,n,+a,的平均数是,.,(2),数据,x,1,x,2,x,n,与数据,x,1,+a,x,2,+a,x,n,+a,的方差,相等,.,(3),若,x,1,x,2,x,n,的方差为,s,2,则,ax,1,ax,2,ax,n,的方差为,a,2,s,2,.,归纳总结,有关平均数、方差的重要,19,2.,已知,样本数据,x,1,x,2,x,n,的平均数,=,5,s,2,=,2,则样本数据,2,x,1,+,1,2,x,2,+,1,2,x,n,+,1,的平均数为,方差为,.,答案,:,11,8,解析,:,因为样本数据,x,1,x,2,x,n,的平均数,=,5,所以样本数据,2,x,1,+,1,2,x,2,+,1,2,x,n,+,1,的平均数为,2,+,1,=,2,5,+,1,=,11,.,方差为,2,2,s,2,=,4,2,=,8,.,2.已知样本数据x1,x2,xn的平均数 =5,s,20,例,1,在对树人中学高一年级学生身高的调查中,采用样本量比例分配的分层随机抽样,如果不知道样本数据,只知道抽取了男生,23,人,其平均数和方差分别为,170.6,和,12.59,抽取了女生,27,人,其平均数和方差分别为,160.6,和,38.62.,你能由这些数据计算出总样本的方差,并对高一年级全体学生的身高方差作出估计吗?,解:把男生样本记为,x,1,x,2,,,x,23,其平均数记为 ,方差记为,;,把女生样本记为,y,1,y,2,.,y,27,其平均数记为,方差记为,;,把总样本数据的平均数记为 ,方差记为,.,根据方差的定义,总样本方差为,典,例解析,例1 在对树人中学高一年级学生身高的调查中,采用样本量比,21,总体离散程度的估计ppt课件人教A版高中数学必修第二册,22,男生,23,人,其平均数和方差分别为,170.6,和,12.59,女生,27,人,其平均数和方差分别为,160.6,和,38.62,把已知的男生、女生样本平均数和方差的取值代入,可得,男生23人,其平均数和方差分别为170.6和12.59,把,23,归纳总结,归纳总结,24,1,在一个文艺比赛中,,8,名专业人士和,12,名观众代表各组成一个评判小组,给参赛选手打分在给某选手的打分中,专业人士打分的平均数和标准差分别为,47.4,和,3.7,,观众代表打分的平均数和标准差为,56.2,和,11.8,,试根据这些数据计算这名选手得分的平均数和方差,跟踪训练,1在一个文艺比赛中,8名专业人士和12名观众代表各组成一个,25,所以这名选手得分的平均数为,52.68,分,,方,差为,107.6,所以这名选手得分的平均数为52.68分,方差为107.6,26,归纳总结,归纳总结,27,9.0 13.6 14.9 5.9 4.0 7.1 6.4 5.4 19.4 2.0,2.2 8.6 13.8 5.4 10.2 4.9 6.8 14.0 2.0 10.5,2.1 5.7 5.1 16.8 6.0 11.1 1.3 11.2 7.7 4.9,2.3 10.0 16.7 12.0 12.4 7.8 5.2 13.6 2.4 22.4,3.6 7.1 8.8 25.6 3.2 18.3 5.1 2.0 3.0 12.0,22.2 10.8 5.5 2.0 24.3 9.9 3.6 5.6 4.4 7.9,5.1 24.5 6.4 7.5 4.7 20.5 5.5 15.7 2.6 5.7,5.5 6.0 16.0 2.4 9.5 3.7 17.0 3.8 4.1 2.3,5.3 7.8 8.1 4.3 13.3 6.8 1.3 7.0 4.9 1.8,7.1 28.0 10.2 13.8 17.9 10.1 5.5 4.6 3.2 21.6,计算出样本平均数,=,样本标准差,s .,8.79,6.20,问题探究,9.0 13.6 14.9 5.9,28,如图所示,可以发现,这,100,个数据中大部分落在区间,内,,在区间,外,的只有,7,个,.,也就是说,绝大部分数据落在 内,.,样本标准差刻画了数据离平均数波动的浮动大小,平均数和标准差一起能反映数据取值的信息,.,如图所示,可以发现,这100个数据中大部分落在区间,29,1,.,为评估一种农作物的种植效果,选了,n,块地作试验田,.,这,n,块地的亩产量,(,单位,:kg),分别是,x,1,x,2,x,n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是,(,),A.,x,1,x,2,x,n,的平均值,B.,x,1,x,2,x,n,的标准差,C.,x,1
展开阅读全文