《不等关系》课件-(同课异构)2022年课件

上传人:无*** 文档编号:251965315 上传时间:2024-11-11 格式:PPT 页数:40 大小:1.16MB
返回 下载 相关 举报
《不等关系》课件-(同课异构)2022年课件_第1页
第1页 / 共40页
《不等关系》课件-(同课异构)2022年课件_第2页
第2页 / 共40页
《不等关系》课件-(同课异构)2022年课件_第3页
第3页 / 共40页
点击查看更多>>
资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,2021 年“精 英 杯,全国公开课大赛,获奖作品展示,教育部“精英杯公开课大赛简介,2021年6月,由教育学会牵头,教材编审委员会具体组织实施,在全国8个城市,设置了12个分会场,范围从“小学至高中全系列部编新教材进行了统一的培训和指导。每次指導,都輔以精彩的優秀示範課。在這些示範課中,不乏全國名師和各省名師中的佼佼者。,他们的课程,无论是在内容和形式上,都是经过认真研判,把各学科的核心素养作为教学主线。既涵盖城市中小学、又包括乡村大局部学校的教学模式。適合全國大局部教學大區。本課件就是從全國一等獎作品中,优选出的具有代表性的作品。示范性强,有很大的推广价值。,不等关系,第二章 一元一次不等式与,一元一次不等式组,导入新课,讲授新课,当堂练习,课堂小结,八年级数学下BS,教学课件,1.了解不等式的概念,认识不等号的含义;,2.学会并准确运用不等式表示数量关系,形成在表,达中渗透数形结合的思想重点、难点,学习目标,导入新课,现实生活中,数量之间存在着相等与不相等的关系,.,对于不相等的关系问题,我们如何用式子来表示它们呢?,例如,小明的身高为,155cm,,小聪的身高为,156cm,,,那么我们可以用不等号“或“155,或,155 50.,问题引导,问题,2,一辆轿车在一条规定车速应高于,60km/h,,且低于,100 km/h,的高速公路上行驶,如何用式子来表示轿车在该高速公路上行驶的路程,s,(,km,),与行驶时间,x,(,h,),之间的关系呢,?,根据路程与速度、时间之间的关系可得:,s,60,x,,且,s,155,,,15550,,,s,60,x,,,s,或“,“0;24x+3yy+5.,解:125是不等式;34不是不等式.,练一练,例 如图,用两根长度均为l cm的绳子分别围成一个正方形和一个圆.,1如果要使正方形的面积不大于25cm2,那么绳长l 应满足怎样的关系式?,2如果要使圆的面积不小于100cm2,那么绳长l 应满足怎样的关系式?,典例精析,3)当l=8时,正方形和圆的面积哪个大?l=12呢?,当,l,=8,时,正方形的面积为,圆的面积为,所以,,当,l,=12,时,正方形的面积为,圆的面积为,所以,,4)当l=40时,正方形和圆的面积哪个大?通过以上问题,由此你发现什么了?,当,l,=,40,时,正方形的面积为,圆的面积为,所以,,我们发现无论取何值,圆的面积始终大于正方形的面积,.,用不等式表示以下关系,并分别写出两个满足不等式的数:,做一做,1x的一半不小于1 2y与4的和大于0.5 3a是负数;4b是非负数;,x,1.,如,x=,1,,,1,.,(2),y,+40.5.,如,y=,0,1,.,(3),a,0,或,b,=0,.,如,b,=,0,2.,1.用不等式表示以下数量关系:,1a是负数;,2x比-3小;,3两数m与n的差大于5.,a,0.,x,5.,当堂练习,2.雷电的温度大约是28000,比太阳外表温度的t,那么t应该满足怎样的关系式?,解:,t,30.,课堂小结,不等式,概念,用不等号“或“,“或“连接的式子,列不等式,1.,理解题意;,2.,找出数量关系;,3.,列出关系式,.,角平分线,第一章 三角形的证明,导入新课,讲授新课,当堂练习,课堂小结,八年级数学下BS,教学课件,第,1,课时 角平分线,1.会表达角平分线的性质及判定;重点,2.能利用三角形全等,证明角平分线的性质定理,理解和掌握角平分线性质定理和它的逆定理,能应用这两个性质解决一些简单的实际问题;难点,3.经历探索、猜测、证明的过程,进一步开展学生的推理证明意识和能力,学习目标,情境引入,如图,要在S区建一个贸易市场,使它到铁路和公路距离相等,离公路与铁路交叉处500米,这个集贸市场应建在何处?,比例尺为120000,D,C,S,解:作夹角的角平分线,OC,,,截取,OD,=2.5cm,D,即为所求,.,O,导入新课,1.,操作测量,:取点,P,的三个不同的位置,分别过点,P,作,PDOA,,,PE OB,点,D,、,E,为垂足,测量,PD,、,PE,的长,.,将,三次数据填入下表:,2.观察测量结果,猜测线段PD与PE的大小关系,写出结:_,PD,PE,第一次,第二次,第三次,C,O,B,A,PD=PE,p,D,E,实验:,OC,是,AOB,的平分线,点,P,是射线,OC,上的,任意一点,猜测:角的平分线上的点到角的两边的距离相等.,角平分线的性质,一,讲授新课,验证猜测,:如图,AOC=BOC,点P在OC上,PDOA,PEOB,垂足分别为D,E.,求证:PD=PE.,P,A,O,B,C,D,E,证明:,PD,OA,PE,OB,,,PDO,=,PEO,=90.,在,PDO,和,PEO,中,,PDO,=,PEO,,,AOC=BOC,,,OP=OP,,,PDO,PEO,(,AAS,).,PD=PE,.,角的平分线上的点到角的两边的距离相等,性质定理:,角的平分线上的点到角的两边的距离相等,.,应用所具备的条件:,(,1,),角的平分线;,(,2,),点在该平分线上;,(,3,),垂直距离,.,定理的作用:,证明线段相等,.,应用格式:,OP,是,AOB,的平分线,,PD=PE,在角的平分线上的点到这个角的两边的距离相等.,推理的理由有三个,必须写完全,不能少了任何一个,.,知识要点,PD,OA,PE,OB,,,B,A,D,O,P,E,C,判一判:1 如下左图,AD平分BAC,,=,,,(),在角的平分线上的点到这个角的两边的距离相等,BD CD,B,A,D,C,(2)如上右图,DCAC,DBAB .,=,(),在角的平分线上的点到这个角的两边的距离相等,BD CD,B,A,D,C,例1:如图,在ABC中,AD是它的角平分线,且BD=CD,DEAB,DFAC.垂足分别为E,F.,求证:EB=FC.,A,B,C,D,E,F,证明:,AD,是,BAC,的角平分线,,DE,AB,DF,AC,,,DE=DF,DEB=DFC,=90.,在,Rt,BDE,和,Rt,CDF,中,,DE=DF,,,BD=C,D,,,Rt,BDE,Rt,CDF,(,HL,).,EB=FC,.,例2:如图,AM是BAC的平分线,点P在AM上,PDAB,PEAC,垂足分别是D、E,PD=4cm,那么PE=_cm.,B,A,C,P,M,D,E,4,温馨提示:,存在两条垂线段直接应用,A,B,C,P,变式:如图,在RtABC中,AC=BC,C90,AP平分BAC交BC于点P,假设PC4,AB=14.,1那么点P到AB的距离为_.,D,4,温馨提示:,存在一条垂线段构造应用,A,B,C,P,变式:如图,在Rt ABC中,AC=BC,C900,AP平分BAC交BC于点P,假设PC4,AB=14.,2求APB的面积.,D,3求PDB的周长.,AB,P,D,=28.,由垂直平分线的性质,可知,,PD=PC=4,,,=,1.,应用角平分线性质:,存在,角平分线,涉及,距离问题,2,.,联系角平分线性质:,面积,周长,条件,知识与方法,利用角平分线的性质所得到的等量关系进行转化求解,角平分线的判定,二,P,A,O,B,C,D,E,角的内部到角的两边距离相等的点在角的平分线上,思考:交换角的平分线性质中的和结论,你能得到什么结论,这个新结论正确吗?,角平分线的性质:,角的平分线上的点到角的两边的距离相等,.,思考:这个结论正确吗?,逆,命,题,:如图,PDOA,PEOB,垂足分别是D、E,PD=PE.,求证:点P在AOB的角平分线上.,证明:,作射线,OP,,,点,P,在,AOB,角的平分线上,.,在,Rt,PDO,和,Rt,PEO,中,,全等三角形的对应角相等.,OP=OP公共边,,PD=PE,,B,A,D,O,P,E,PD,OA,PE,OB.,PDO,=,PEO,=90,,,RtPDORtPEO HL.,AOP,=,BOP,证明猜测,判定定理:,角的内部到角的两边的距离相等的点在角的平分线上,.,P,A,O,B,C,D,E,应用所具备的条件:,(,1,),位置关系:点在角的内部,;,(,2,),数量关系:该点到角两边的距离相等,.,定理的作用:,判断点是否在角平分线上,.,应用格式:,PD,OA,PE,OB,,,PD=PE.,点,P,在,AOB,的平分线上,.,知识总结,例3:如图,CBD和BCE的平分线相交于点F,,求证:点F在DAE的平分线上,证明:,过点,F,作,FG,AE,于,G,,,FH,AD,于,H,,,FM,BC,于,M,.,点,F,在,BCE,的平分线上,,FG,AE,,,FM,BC.,FG,FM,.,又点,F,在,CBD,的平分线上,,FH,AD,,,FM,BC,,,FM,FH,,,FG,FH,.,点,F,在,DAE,的平分线上,.,G,H,M,A,B,C,F,E,D,例4 如图,某地有两所大学和两条交叉的公路图中点M,N表示大学,OA,OB表示公路,现方案修建一座物资仓库,希望仓库到两所大学的距离相同,到两条公路的距离也相同,你能确定出仓库P应该建在什么位置吗?请在图中画出你的设计(尺规作图,不写作法,保存作图痕迹),O,N,M,A,B,O,N,M,A,B,P,方法总结:到角两边距离相等的点在角的平分线上,到两点距离相等的点在两点连线的垂直平分线上,.,解:如以下图:,归纳总结,图形,已知,条件,结论,P,C,P,C,OP,平分,AOB,PDOA,于,D,PEOB,于,E,PD=PE,OP,平分,AOB,PD=PE,PDOA,于,D,PEOB,于,E,角的平分线的,判定,角的平分线的,性质,当堂练习,2.ABC中,C=90,AD平分CAB,且BC=8,BD=5,那么点D到AB的距离是 .,A,B,C,D,3,E,1.如图,DEAB,DFBG,垂足分别是E,F,DE=DF,EDB=60,那么 EBF=度,BE=.,60,BF,E,B,D,F,A,C,G,3.用三角尺可按下面方法画角平分线:在AOB的两边上,分别取OM=ON,再分别过点M,N作OA,OB的垂线,交点为P,画射线OP,那么OP平分AOB.为什么?,A,O,B,M,N,P,解:在RTMOP和RTNOP中,,OM=ON,,OP=OP,,RTMOPRTNOPHL.,MOP=NOP,即OP平分AOB.,课堂小结,角平分线,性质定理,一个点:,角平分线上的点;,二距离:,点到角两边的距离;,两相等:,两条垂线段相等,辅助线,添加,过角平分线上一点向两边作垂线段,判定定理,在一个角的内部,到角两边距离相等的点在这个角的平分线上,
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 管理文书 > 施工组织


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!