2022年湘教版八下《角平分线的性质定理》立体精美课件

上传人:无*** 文档编号:251963250 上传时间:2024-11-11 格式:PPT 页数:43 大小:1.09MB
返回 下载 相关 举报
2022年湘教版八下《角平分线的性质定理》立体精美课件_第1页
第1页 / 共43页
2022年湘教版八下《角平分线的性质定理》立体精美课件_第2页
第2页 / 共43页
2022年湘教版八下《角平分线的性质定理》立体精美课件_第3页
第3页 / 共43页
点击查看更多>>
资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,角平分线的性质,第,1,章 直角三角形,导入新课,讲授新课,当堂练习,课堂小结,第,1,课时 角平分线的性质定理,八年级数学下(,XJ,),教学课件,学习目标,1.,通过操作、验证等方式,探究并掌握角平分线的性质定理,.,(难点),2.,能运用角的平分线性质解决简单的几何问题,.,(重点),挑战第一关 情境引入,问题,1,:,在纸上,画一个角,你能得到这个角的平分,线吗?,导入新课,用量角器度量,也可用折纸的方法,问题,2,:,如果把前面的纸片换成木板、钢板等,还能用对折的方法得到木板、钢板的角平分线吗?,提炼图形,问题,3,:,如图,是一个角平分仪,其中,AB,=,AD,BC,=,DC,.,将点,A,放在角的顶点,AB,和,AD,沿着角的两边放下,沿,AC,画一条射线,AE,AE,就是角平分线,你能说明它的道理吗,?,A,B,C,(,E,),D,其依据是,SSS,,两全等三角形的,对应角相等,.,1.,操作测量,:取点,P,的三个不同的位置,分别过点,P,作,PDOA,,,PE OB,点,D,、,E,为垂足,测量,PD,、,PE,的长,.,将三次数据填入下表:,2.,观察测量结果,猜想线段,PD,与,PE,的大小关系,写出结:,_,C,O,B,A,PD=PE,p,D,E,实验:,OC,是,AOB,的平分线,点,P,是射线,OC,上的,任意一点,猜想:,角的平分线上的点到角的两边的距离相等,.,角平分线的性质,讲授新课,验证猜想,已知:如图,,AOC,=,BOC,点,P,在,OC,上,,PD,OA,PE,OB,垂足分别为,D,E,.,求证:,PD=PE,.,P,A,O,B,C,D,E,证明:,PD,OA,PE,OB,,,PDO,=,PEO,=90.,在,PDO,和,PEO,中,,PDO,=,PEO,,,AOC=BOC,,,OP=OP,,,PDO,PEO,(AAS).,PD=PE,.,角的平分线上的点到角的两边的距离相等,性质定理:,角的平分线上的点到角的两边的距离相等,.,应用所具备的条件:,(,1,),角的平分线;,(,2,),点在该平分线上;,(,3,),垂直距离,.,定理的作用:,证明线段相等,.,应用格式:,OP,是,AOB,的平分线,,PD=PE,推理的理由有三个,必须写完全,不能少了任何一个,.,知识要点,PD,OA,PE,OB,,,B,A,D,O,P,E,C,判一判:,(,1,),如下左图,,AD,平分,BAC,(,已知),,=,,,(),在角的平分线上的点到这个角的两边的距离相等,BD CD,B,A,D,C,(2),如上右图,,,DC,AC,,,DB,AB,(已知),.,=,(),在角的平分线上的点到这个角的两边的距离相等,BD CD,B,A,D,C,例,1,:,已知:如图,在,ABC,中,,AD,是它的角平分线,且,BD=CD,DE,AB,DF,AC,.,垂足分别为,E,F,.,求证:,EB=FC,.,A,B,C,D,E,F,证明:,AD,是,BAC,的平分线,,DE,AB,DF,AC,,,DE=DF,DEB=DFC,=90.,在,Rt,BDE,和,Rt,CDF,中,,DE=DF,,,BD=C,D,,,Rt,BDE,Rt,CDF,(HL).,EB=FC,.,典例精析,例2:,如图,AM是BAC的平分线,点P在AM上,PDAB,PEAC,垂足分别是D、E,PD=4cm,则PE=_cm.,B,A,C,P,M,D,E,4,温馨提示:,存在两条垂线段直接应用,典例精析,A,B,C,P,变式:,如图,在,Rt,ABC中,AC=BC,C90,,AP平分BAC交BC于点P,若PC4,AB=14.,(1)则点P到AB的距离为_.,D,4,温馨提示:,存在一条垂线段构造应用,A,B,C,P,变式:,如图,在,Rt,ABC中,AC=BC,C90,0,,AP平分BAC交BC于点P,若PC4,,AB=14.,(,2,)求,APB,的面积,.,D,(,3,)求PDB的周长,.,AB,P,D,=28.,由垂直平分线的性质,可知,,PD=PC=4,,,=,1.,应用角平分线性质:,存在,角平分线,涉及,距离问题,2,.,联系角平分线性质:,面积,周长,条件,知识与方法,利用角平分线的性质所得到的等量关系进行转化求解,当堂练习,2.,ABC,中,C=90,AD,平分,CAB,且,BC,=8,BD,=5,则,点,D,到,AB,的距离是,.,A,B,C,D,3,E,1.,如图,,DE,AB,,,DF,BG,,,垂足分别是,E,,,F,,,DE=DF,,,EDB,=60,,,则,EBF,=,,,BE,=,.,60,BF,E,B,D,F,A,C,G,3.,用尺规作图作一个已知角的平分线的示意图如图所示,则能说明,AOC,=,BOC,的依据是(),A.SSS B.ASA,C.AAS D.,角平分线上的点到角两边的距离相等,A,B,M,N,C,O,A,4.,如图,AD是ABC的角平分线,DEAB,垂足为E,S,ABC,7,DE2,AB4,则AC的长是(),A6 B5 C4 D3,D,B,C,E,A,D,解析:,过点D作DFAC于F,,AD是,ABC的角平分线,,DEAB,,DFDE2,,解得AC3.,F,方法总结:,利用角平分线的性质作辅助线构造三角形的高,再利用三角形面积公式求出线段的长度是常用的方法,E,D,C,B,A,6,8,10,5.在RtABC中,BD平分ABC,DEAB于E,则:,(1)哪条线段与DE相等?为什么?,(2)若AB10,BC8,AC6,求BE,AE的长和AED的周长.,解:,(1),DC=DE.,理由如下:角平分线上的点到角两边的距离相等,.,(,2,)在,Rt,CDB,和,Rt,EDB,中,,DC,=,DE,,,DB,=,DB,,,Rt,CDB,Rt,EDB,(HL),,,BE,BC=,8.,AE,AB-BE=,2.,AED,的周长,=,AE+ED+DA=,2+6=8.,6.,如图,已知,AD,BC,,,P,是,BAD,与,ABC,的平分线的交点,,PE,AB,于,E,,且,PE,=3,,求,AD,与,BC,之间的距离,.,解:过点,P,作,MN,AD,于点,M,,交,BC,于点,N,.,AD,BC,,,MN,BC,,,MN,的长即为,AD,与,BC,之间,的距离,.,AP,平分,BAD,PM,AD,PE,AB,,,PM,=,PE.,同理,,PN,=,PE.,PM,=,PN,=,PE=,3,.,MN=,6.,即,AD,与,BC,之间的距离为,6.,7.,如图所示,D是ACG的平分线上的一点DEAC,DFCG,垂足分别为E,F.求证:CECF.,证明:,CD,是,ACG,的平分线,,DE,AC,,,DF,CG,,,DE,DF,.,在,Rt,CDE,和,Rt,CDF,中,,Rt,CDE,Rt,CDF,(HL),,,CE,CF,.,课堂小结,角平分线,性质定理,一个点:,角平分线上的点;,二距离:,点到角两边的距离;,两相等:,两条垂线段相等,辅助线,添加,过角平分线上一点向两边作垂线段,学习目标,1.,探索并运用平方差公式进行因式分解,体会转化,思想,(重点),2.,能,会综合运用提公因式法和平方差公式对多项式进,行因式分解,(难点),导入新课,a,米,b,米,b,米,a,米,(,a,-,b,),情境引入,如图,在边长为,a,米的正方形上剪掉一个边长为,b,米的小正方形,将剩余部分拼成一个长方形,根据此图形变换,你能得到什么公式?,a,2,-,b,2,=,(,a+b,)(,a,-,b,),讲授新课,用平方差公式进行因式分解,一,想一想:,多项式,a,2,-,b,2,有什么特点?你能将它分解因式吗?,是,a,b,两数的平方差的形式,),)(,(,b,a,b,a,-,+,=,2,2,b,a,-,),)(,(,2,2,b,a,b,a,b,a,-,+,=,-,整式乘法,因式分解,两个数的,平方差,,等于这两个数的,和,与这两个数的,差,的,乘积,.,平方差公式:,辨一辨:,下列多项式能否用平方差公式来分解因式,为什么?,符合平方差的形式的多项式才能用平方差公式进行因式分解,即能写成,:,(),2,-(),2,的形式,.,(,1,),x,2,+,y,2,(,2,),x,2,-,y,2,(,3,),-,x,2,-,y,2,-(,x,2,+,y,2,),y,2,-,x,2,(,4,),-,x,2,+,y,2,(,5,),x,2,-25,y,2,(,x,+5,y,)(,x,-5,y,),(,6,),m,2,-1,(,m,+1)(,m,-1),例,1,分解因式:,a,a,b,b,(,+,),(,-,),a,2,-,b,2,=,解,:(1),原式,=,2,x,3,2,x,2,x,3,3,(2),原式,a,b,典例精析,方法总结:,公式中的,a,、,b,无论表示,数、单项式、,还是,多项式,,只要被分解的多项式能,转化,成,平方差,的形式,就能用平方差公式因式分解,.,分解因式:,(1)(,a,b,),2,4,a,2,;,(2)9(,m,n,),2,(,m,n,),2,.,针对训练,(2,m,4,n,)(4,m,2,n,),解:,(1),原式,(,a,b,2,a,)(,a,b,2,a,),(,b,a,)(3,a,b,),;,(2),原式,(3,m,3,n,m,n,)(3,m,3,n,m,n,),4(,m,2,n,)(2,m,n,),若用平方差公式分解后的结果中有公因式,一定要再用提公因式法继续分解,.,当场编题,考考你!,),)(,(,2,2,b,a,b,a,b,a,-,+,=,-,20,15,2,20,14,2,=,(,2mn,),2,-,(3xy),2,=,(,x,+,z,),2,-,(,y,+,p,),2,=,例,2,分解因式:,解:,(1),原式,(,x,2,),2,-,(,y,2,),2,(,x,2,+y,2,)(,x,2,-,y,2,),分解因式后,一定要检查是否还有能继续分解的因式,若有,则需继续分解,.,(,x,2,+y,2,)(,x+y,)(,x,-,y,);,(2),原式,ab,(,a,2,-,1),分解因式时,一般先用提公因式法进行分解,然后再用公式法,.,最后进行检查,.,ab,(,a+,1)(,a,-,1).,方法总结:,分解因式前应先分析多项式的特点,一般先提公因式,再套用公式注意分解因式必须进行到每一个多项式都不能再分解因式为止,分解因式:,(1),5,m,2,a,4,5,m,2,b,4,;,(2),a,2,4,b,2,a,2,b,.,针对训练,(,a,2,b,)(,a,2,b,1).,5,m,2,(,a,2,b,2,)(,a,b,)(,a,b,),;,解:,(1),原式,5,m,2,(,a,4,b,4,),5,m,2,(,a,2,b,2,),(,a,2,b,2,),(2),原式,(,a,2,4,b,2,),(,a,2,b,),(,a,2,b,)(,a,2,b,),(,a,2,b,),例,3,把,x,3,y,2,-,x,5,因式分解.,解:,x,3,y,2,-,x,5,=,x,3,(,y,2,-,x,2,),=,x,3,(,y,+,x,)(,y,-,x,),分析:,x,3,y,2,-,x,5,有公因式,x,3,,应先提出公因式,再用公式进行因式分解.,问题:能直接用公式分解因式吗?,又如:把,-4,ax,2,+16,ay,2,因式分解,解:-4,ax,2,+16,ay,2,=-4,a,(,x,2,-4,y,2,),=-4,a,(,x,+2,y,)(,x,-2,y,),例,4,已知,x,2,y,2,2,,,x,y,1,,求,x,-,y,,,x,,,y,的值,x,y,2.,解:,x,2,y,2,(,x,y,)(,x,y,),2,,,x,y,1,,,联立,组成二元一次方程组,,解得,方法总结:,在与,x,2,y,2,,,x
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 管理文书 > 施工组织


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!