资源描述
单击此处编辑母版标题样式,第 八 章,方差分析和回归分析,在工农业生产中产量的高低、质量的优劣,经济管理中效果的好坏等,往往是由许多因素所至。这就要从众多因素中找出主要因素,分析该因素处在何种状态时,使产量高、质量优、管理效果好。要解决这类问题:,一、设计一个试验(试验设计);,二、如何分析多因素多状态下试验结果的差异性?,当两个总体方差相等时,可用,t,检验来检验两个总体均值间的差异性;当总体是三个或三个以上时如何检验呢?就要用本章的方差分析。它是在二十世纪,20,年代由英国著名统计学家,R.,.Fisher,首先应用到农业试验中的。,由于试验设计不同,方差分析的方法也有所不同。本章重点介绍单、双因素方差分析。,方差分析的作用:,从方差的角度分析试验数据、判断各因素各状态对试验结果影响大小。,例,1,检验某种激素对羊羔增重的效应。选用,3,个剂量进行试验,加上对照(不用激素)在内,每次试验要用,4,只羊羔,若进行,4,次重复,则共需要,16,只羊羔。研究激素用量对羊羔增重的影响是否显著。,羊羔的增重(,kg/,每头,/,每,200,日),试验中,我们所关心的指标,即羊羔的增重数量,称为,试验指标,或,响应值,;影响增重数量(响应值)的指标是激素,称为,因素,;激素用量(因素的状态)称为因素的水平或简称,水平,。本例中有,1,个因素,,4,个水平,故称为,单因素试验,。,几个概念,处理,重复,1(,对照,),2,3,4,1,47,50,57,54,2,52,54,53,65,3,62,67,69,74,4,51,57,57,59,在方差分析中,通常取,1-3,个,因素进行研究。因素的每一个状态称为一个水平,,水平可以是数量化的,也可以是定性的,。,例,1,为单因素四水平试验。也就是四个总体的比较问题。,本例中有一因素,(,激素,记为,A,),四个不同水平,(,分别记为,A,1,A,2,A,3,A,4,),。可认为一个激素水平的增重量就是一个总体,在方差分析中总假定,各总体独立地服从同方差的正态分布,,即第,j,个激素水平的增重量是一个随机变量,它服从分布,N,(,j,2,),i,=1,2,3,4.,要检验假设,若拒绝,H,0,,我们就认为这四个激素水平的平均增重量之间有显著差异;反之,就认为各激素水平间增重量的不同是由随机因素引起的。,方差分析是检验同方差的若干正态母体均值是否相等的一种统计分析方法。,1.,单因素方差分析,例,2,一批由同种原料织成的同一种布,用不同染整工艺处理,然后进行缩水率试验,考察染整工艺对缩水率的影响,在其它条件尽可能相同时,测得缩水率(,%,)如下表。,水平,重复,A,1,A,2,A,3,A,4,A,5,1,4.3(,x,11,),6.1(,x,12,),6.5(,x,13,),9.3(,x,14,),9.5(,x,15,),2,7.8(,x,21,),67.3(,x,22,),8.3(,x,23,),8.7(,x,24,),8.8(,x,25,),3,3.3(,x,31,),4.2(,x,32,),8.6(,x,33,),7.2(,x,34,),11.4(,x,35,),4,6.5(,x,41,),4.1(,x,42,),8.2(,x,42,),10.1(,x,44,),7.8(,x,45,),由于,x,ij,N,(,j,2,),,,所以假定,x,ij,具有下述数据结构式:,其中,ij,N,(,j,2,),且相互独立。,要检验的假设是:,一般地,设单因素试验中,,因素,A,有,k,个水平,(,总体,),,记为,A,1,,,A,2,,,,,A,k,,相应的响应值(,试验结果),X,1,,,X,2,,,,,X,k,是,k,个相互独立的总体,且,X,j,N,(,j,2,),(,j,=1,2,k,)。,今对第,j,个总体进行,n,j,次重复观测,,得到,n,j,个观测数据,x,ij,(,i,=1,2,n,j,),这可以看成是取自,X,j,的一个容量为,n,j,的样本。,这里,并不要求,n,1,n,2,n,k,完全相同。,观测数据及计算列表如下。,单因素方差分析数据及计算表,由于,x,ij,N,(,j,2,),,,所以假定,x,ij,具有下述数据结构式:,其中,ij,N,(,0,2,),且相互独立。,要检验的假设是:,为了方便起见,把参数的形式改变,并记,称,为一般平均,,j,为因素,A,的第,j,个水平,A,j,的效应,容易看出,,k,个效应满足关系式:,单因子方差分析模型中的数据结构式可以写成:,x,ij,=,+,j,+,ij,j=,1,2,k,;,i=,1,2,n,j,;,所要检验的假设可以写成:,H,0,:,a,1,=a,2,=,=a,k,=,0,引起诸,x,ij,波动的原因有两个:一个是假设,H,0,为真时,,x,ij,的波动纯粹是随机性引起的;另一个可能是假设不真而引起的。因而我们就想用一个量来刻划诸,x,ij,之间的波动,并把引起波动的上述两个原因从中分离出来,用另外两个量表示出来,通过比较这两个量来检验,H,0,的真实性。记,总离差平方和,:,它反映了观测数据,总的变异程度,组间平方和,:,反映因子,A,的不同水平效应间的差异,组内,(,误差,),平方和,:,反映了随机误差,ij,对响应值影响的总和,可以证明,S,t,=,S,A,+,S,e,平方和分解公式,E,(,S,e,)=(,n,-,k,),若,0,成立,,则,当,H,0,为真时,,是,2,的两个无偏估计,故,比值,不应太大。当,F,值过大时,可以认为假设,H,0,不真。,可以证明,,当,假设,H,0,为真时,有,于是,对于 显著性水平,,查出临界值,F,(,k,-1,n,-,k,).,若,F,F,(,k,-1,n,-,k,),则在,水平下拒绝,H,0,,即认为有些水平对响应值的影响有显著差异。,单因素方差分析表,记,S,t,S,A,S,e,的自由度为,f,t,f,A,f,B,可以证明如下自由度分解公式:,f,t,=,f,A,+,f,B,设在某试验中,有二个因素,A,、,B,在变动。,因素,A,取,m,个不同水平,A,1,,,A,2,,,,,A,m,,,因素,B,取,r,个不同水平,B,1,,,B,2,,,,,B,r,,,在,(,A,i,B,j,),水平组合下的试验结果独立地服从,N,(,ij,2,),分布。,观测数据及计算表见教材表,9.8,。数学模型为,2,双因素方差分析,例,3,将土质基本相同的一块耕地分成均等的五个地块,每块又分成均等的四个小区。有四个品种的小麦,在每一地块内随机分种在四个区上,每小区的播种量相同,测得收获量如下表,(单位:公斤),试以显著性水平,1,=0.05,2,=0.01,考察品种和,地块对收获量的影响是否显著。,这是一个双因素无重复试验的方差分析问题。,一、双因素无重复试验的方差分析,若,ij,=,+,i,+,j,,我们称该方差分析模型为无交互作用的方差分析模型。此时,我们只需对(,A,i,B,j,)的每个组合各做一次试验,记其结果为,x,ij,,则,x,ij,=,+,i,+,j,+,ij,。因此,,无交互作用的方差分析模型为,假设有两个:,H,01,:,1,=,2,=,a,m,=0,H,02,:,1,=,2,=,r,=0,若检验结果拒绝,H,01,(,H,02,),,则认为因子,A,(,B,),的不同水平对结果有显著影响,若二者均不拒绝,那就说明因子,A,与,B,的不同水平组合对结果无显著影响。,因素,A,的偏差平方和,反映因素,A,的水平间的差异引起的波动。,因子,B,的偏差平方和,反映了因素,B,的水平间的差异引起的波动。,误差平方和,反映了随机误差引起的波动。,总的偏差平方和,反映了数据,x,ij,总的波动大小。,在,H,01,,,H,02,为真时,对给定的显著性水平,,当,F,A,F,(,m,-1,(,m,-1)(,r,-1),时拒绝,H,01,F,B,F,(,r,-1,(,m,-1)(,r,-1),时拒绝,H,02,.,例,3,将土质基本相同的一块耕地分成均等的五个地块,每块又分成均等的四个小区。有四个品种的小麦,在每一地块内随机分种在四个区上,每小区的播种量相同,测得收获量如下表(单位:公斤),试以显著性水平,1,=0.05,2,=0.01,考察品种和地块对收获量的影响是否显著。,查表得临界值,F,0.05,(4,,,12)=3.26,,,F,0.01,(3,,,12)=5.95,。由于,F,B,F,0.05,(4,,,12),,故认为地块不同对收获量无显著影响。,由于,F,A,F,0.01,(3,,,12),,故认为品种不同对收获量影响极显著。,二、双因素等重复试验的方差分析,若,ij,+,i,+,j,,则称,=,ij,-,-,i,-,j,为因子,A,的第,i,个水平与因子,B,的第,j,个水平的交互效应,它们满足关系式:,为了研究交互效应是否对结果有显著影响,那么在(,A,i,B,j,),水平组合下至少要做,t,(,2,)次试验,记其结果为,x,ijk,,则,要检验假设,:,H,01,:,1,=,2,=,m,=0,H,02,:,1,=,2,=,r,=0,H,03,:,对一切,i,j,有,ij,=0,将总的离差平方和分解:,S,e,反映了误差的波动;,S,A,,,S,B,,,S,AB,除反映误差的波动外还分别反映了因子,A,的效应的差异,因子,B,的效应的差异,交互效应的差异所引起的波动。我们分别称它们为误并的偏差平方和,因子,A,的偏差平方和,因子,B,的偏差的平方和以及交互作用,A,B,的偏差平方和。,对给定的显著性水平,,,例,4,在某化工生产中为了提高收率,选了三种不同浓度,四种不同温度做试验。在同一浓度与温度组合下各做两次试验,其收率数据如下面计算表所列(数据均已减去,75,)。试在,=0.05,显著性水平下检验不同浓度、不同温度以及它们间的交互作用对收率有无显著影响。,解,经计算的方差分析表,方差分析结果表明,只有因子,A,是显著的(因为,4.09,3.89,),即浓度不同将对收率产生显著影响;而温度及交互作用的影响都,不显著,这说明要提高收率必须把浓度控制好。,
展开阅读全文