[学习]概率论完整PPT课件第31讲

上传人:无*** 文档编号:250586470 上传时间:2024-11-03 格式:PPT 页数:46 大小:1.37MB
返回 下载 相关 举报
[学习]概率论完整PPT课件第31讲_第1页
第1页 / 共46页
[学习]概率论完整PPT课件第31讲_第2页
第2页 / 共46页
[学习]概率论完整PPT课件第31讲_第3页
第3页 / 共46页
点击查看更多>>
资源描述
,假设检验,参数假设检验,非参数假设检验,这类问题称作假设检验问题.,总体分布已知,,检验关于未知参数,的某个假设,总体分布未知时的,假设检验问题,在本讲中,我们将讨论不同于参数估计的另一类重要的统计推断问题.这就是,根据样本的信息检验关于总体的某个假设是否正确,.,让我们先看一个例子.,这一讲我们讨论对参数的假设检验.,生产流水线上罐装可乐不断地封装,然后装箱外运.怎么知道这批罐装可乐的容量是否合格呢?,把每一罐都打开倒入量杯,看看容量是否合于标准.,这样做显然不行!,罐装可乐的容量按标准应在,350毫升和360毫升之间.,每隔一定时间,抽查若干罐.,如每隔1小时,抽查5罐,得5个容量的值,X,1,,,X,5,,,根据这些值来判断生产是否正常.,如发现不正常,就应停产,找出原因,排除故障,然后再生产;如没有问题,就继续按规定时间再抽样,以此监督生产,保证质量.,通常的办法是进行抽样检查.,很明显,不能由5罐容量的数据,在把握不大的情况下就判断生产,不正常,因为停产的损失是很大的.,当然也不能总认为正常,有了问题不能及时发现,这也要造成损失.,如何处理这两者的关系,假设检验面对的就是这种矛盾.,在正常生产条件下,由于种种随机因素的影响,每罐可乐的容量应在355毫升上下波动.这些因素中没有哪一个占有特殊重要的地位.因此,根据中心极限定理,假定每罐容量服从正态分布是合理的.,现在我们就来讨论这个问题.,罐装可乐的容量按标准应在,350毫升和360毫升之间.,它的对立假设是:,称,H,0,为原假设(或零假设,解消假设);,称,H,1,为备选假设(或对立假设).,在实际工作中,往往把不轻易否定的命题作为原假设.,H,0,:,(=355),H,1,:,这样,我们可以认为,X,1,X,5,是取自正态,总体,的样本,,是一个常数.,当生产比较稳定时,,现在要检验的假设是:,那么,如何判断原假设,H,0,是否成立呢?,较大、较小是一个相对的概念,合理的界限在何处?应由什么原则来确定?,由于,是正态分布的期望值,它的估计量是样本均值 ,因此可以根据 与,的差距,来判断,H,0,是否成立.,-,|,|,较小时,可以认为,H,0,是成立的;,当,-,|,|,生产已不正常.,当,较大时,应认为,H,0,不成立,即,-,|,|,问题归结为对差异作定量的分析,以确定其性质.,差异可能是由抽样的随机性引起的,称为,“,抽样误差,”,或 随机误差,这种误差反映偶然、非本质的因素所引起的随机波动.,然而,这种随机性的波动是有一定限度的,如果差异超过了这个限度,则我们就不能用抽样的随机性来解释了.,必须认为这个差异反映了事物的本质差别,即反映了生产已不正常.,这种差异称作,“,系统误差,”,问题是,根据所观察到的差异,如何判断它究竟是由于偶然性在起作用,还是生产确实不正常?,即差异是,“,抽样误差,”,还是,“,系统误差,”,所引起的?,这里需要给出一个量的界限.,问题是:如何给出这个量的界限?,这里用到人们在实践中普遍采用的一个原则:,小概率事件在一次试验中基本上不会发生.,下面我们用一例说明这个原则.,小概率事件在一次试验中基本上不会发生.,这里有两个盒子,各装有100个球.,一盒中的白球和红球数,99个红球,一个白球,99个,另一盒中的白球和红球数,99个白球,一个红球,99个,小概率事件在一次试验中基本上不会发生.,现从两盒中随机取出一个盒子,问这个盒子里是白球99个还是红球99个?,小概率事件在一次试验中基本上不会发生.,我们不妨先假设:,这个盒子里有99个白球,.,现在我们从中随机摸出一个球,发现是,此时你如何判断这个假设是否成立呢?,假设其中真有99个白球,摸出红球的概率只有,1/100,,这是小概率事件.,这个例子中所使用的推理方法,可以称为,小概率事件在一次试验中竟然发生了,不能不使人怀疑所作的假设.,带概率性质的反证法,不妨称为概率反证法.,小概率事件在一次试验中基本上不会发生.,它不同于一般的反证法,概率反证法的逻辑是:如果小概率事件在一次试验中居然发生,我们就以很大的把握否定原假设.,一般的反证法要求在原假设成立的条件下导出的结论是绝对成立的,如果事实与之矛盾,则完全绝对地否定原假设.,请看,红楼梦中的掷骰子,现在回到我们前面罐装可乐的例中:,在提出原假设,H,0,后,如何作出接受和拒绝,H,0,的结论呢?,在假设检验中,我们称这个小概率为,显著性水平,,用,表示.,常取,的选择要根据实际情况而定。,罐装可乐的容量按标准应在350毫升和360毫升之间.一批可乐出厂前应进行抽样检查,现抽查了,n,罐,测得容量为,X,1,X,2,X,n,,,问这一批可乐的容量是否合格?,提出假设,选检验统计量,N,(0,1),H,0,:,=355,H,1,:,355,由于,已知,,它能衡量差异,大小且分布已知.,对给定的显著性水平,,可以在,N,(0,1),表中查到分位点的值 ,使,故我们可以取拒绝域为:,也就是说,“,”,是一个小概率事件.,W,:,如果由样本值算得该统计量的实测值落入区域,W,,,则拒绝,H,0,;,否则,不能拒绝,H,0,.,如果,H,0,是对的,那么衡量差异大小的某个统计量落入区域,W,(,拒绝域)是个小概率事件.如果该统计量的实测值落入,W,,,也就是说,,H,0,成立下的小概率事件发生了,那么就认为,H,0,不可信而否定它.,否则我们就不能否定,H,0,(,只好接受它).,这里所依据的逻辑是:,不否定,H,0,并不是肯定,H,0,一定对,而只是说差异还不够显著,还没有达到足以否定,H,0,的程度.,所以假设检验又叫,“,显著性检验,”,如果显著性水平,取得很小,则拒绝域也会比较小.,其产生的后果是:,H,0,难于被拒绝.,如果在 很小的情况下,H,0,仍被拒绝了,则说明实际情况很可能与之,有显著差异.,基于这个理由,人们常把 时拒绝,H,0,称为是,显著,的,而把在 时拒绝,H,0,称为是,高度显著,的.,在上面的例子的叙述中,我们已经初步介绍了假设检验的基本思想和方法.,下面,我们再结合另一个例子,进一步说明假设检验的一般步骤.,例2,某工厂生产的一种螺钉,标准要求长度是32.5毫米.实际生产的产品,其长度,X,假定服从正态分布 未知,现从该厂生产的一批产品中抽取6件,得尺寸数据如下:,32.56,29.66,31.64,30.00,31.87,31.03,问这批产品是否合格?,分析:这批产品(螺钉长度)的全体组成问题的总体,X,.,现在要,检验,E,(,X,),是否为32.5.,提出原假设和备择假设,第一步:,已知,X,未知.,第二步:,能衡量差异,大小且分布,已知,取一检验统计量,在,H,0,成立下,求出它的分布,第三步:,即,“,”,是一个,小概率事件,.,小概率事件在一次,试验中基本上不会,发生.,对给定的显著性水平 =,0.01,,查表确定临界值,使,得否定域,W,:|,t,|4.0322,得否定域,W,:|,t,|4.0322,故不能拒绝,H,0,.,第四步:,将样本值代入算出统计量,t,的实测值,|,t,|=2.9972.33,故拒绝原假设,H,0,.,落入否定域,解:提出假设:,取统计量,否定域为,W,:,=2.33,此时可能犯第一类错误,犯错误的概率不超过0,.,01.,例4,为比较两台自动机床的精度,分别取容量为10和8的两个样本,测量某个指标的尺寸(假定服从正态分布),得到下列结果:,在 =0.1时,问这两台机床是否有同样的精度?,车床甲:1.08,1.10,1.12,1.14,1.15,1.25,1.36,1.38,1.40,1.42,车床乙:1.11,1.12,1.18,1.22,1.33,1.35,1.36,1.38,解:设,两台自动机床的方差分别为,在 =0.1下检验假设:,其中 为两样本的样本方差,取统计量,否定域为,W,:,或,由样本值可计算得,F,的实测值为:,查表得,由于 0.304,1.51,3.,68,故接受,H,0,.,否定域为,W,:,或,F,=1.51,这时可能犯第二类错误.,想知道如何计算犯第二类错误的概率,再请看演示,两类错误的概率的关系,关于特性曲线的内容.,其它情况可参看书上表(,p,252),,否定域请自己写出.,注意:我们讨论的是,正态总体,均值和方差的假设检验,或样本容量较大,可用正态近似的情形.,下面我们对本讲内容作简单小结.,提出,假设,根据统计调查的目的,提出,原假设,H,0,和备选假设,H,1,作出,决策,抽取,样本,检验,假设,对差异进行定量的分析,,确定其性质,(,是随机误差,还是系统误差.为给出两,者界限,找一检验统计量,T,,,在,H,0,成立下其分布已知.),拒绝还是不能,拒绝,H,0,显著性,水平,P,(,T,W)=,-,犯第一,类错误的概率,,W,为拒绝域,总 结,在大样本的条件下,若能求得检验统计量的,极限分布,依据它去决定临界值,C,.,F,检验 用,F,分布,一般说来,,按照检验所用的统计量的分布,分为,U,检验 用正态分布,t,检验 用,t,分布,检验,用,分布,按照对立假设的提法,,分为,单侧检验,它的拒绝域取在左侧或右侧.,双侧检验,它的拒绝域取在两侧;,若想了解“检验的,p,值”这部分内容,请,看教案“,第31讲续,”.,
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 管理文书 > 施工组织


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!