111空间几何体的结构(第一课时)

上传人:无*** 文档编号:250532043 上传时间:2024-11-03 格式:PPT 页数:25 大小:1.80MB
返回 下载 相关 举报
111空间几何体的结构(第一课时)_第1页
第1页 / 共25页
111空间几何体的结构(第一课时)_第2页
第2页 / 共25页
111空间几何体的结构(第一课时)_第3页
第3页 / 共25页
点击查看更多>>
资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,*,空间几何体的结构(一),1.,空间几何体的分类,2.,棱柱、棱锥、棱台的结构特征,经典的建筑给人以美的享受,你想知道其中的奥秘吗?,问题,1,:,观察下面的图片,这些图片中的物体具有怎样的形状,?,我们如何描述它们的形状,?,如果我们只考虑物体的,形状,和,大小,,而不考虑其它因素,那么由这些物体抽象出来的空间图形就叫做,空间几何体,。,问题,2,:,观察上述空间几何体,构成这些空间几何 体的,面,有什么特点?,多面体,旋转体,一般地,我们把由若干个平面多边形围成的几何体叫做,多面体,。,围成多面体的各个多边形叫做多面体的,面,,,棱,顶点,A,B,C,D,面,棱与棱的公共点叫做多面体的,顶点,,,定义,相邻两个面的公共边叫做多面体的,棱,,,我们把由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫做,旋转体,.,这条定直线叫做旋转体的,轴,.,轴,A,B,O,多面体,棱柱,棱锥,棱台,旋转体,圆柱,圆锥,圆台,球,一,、棱柱的结构特征,:,观察下列几何体并思考:具备哪些性质的几何体叫做棱柱,?,A,B,C,D,A,1,A,1,B,1,B,1,C,1,C,1,D,1,A,B,C,A,1,B,1,C,1,D,1,E,1,A,B,C,E,D,1,、定义,:,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做,棱柱,。,底面,侧面,侧棱,顶点,有两个面互相平行,其余各面都是平行四边形的几何体是棱柱,.,命题是否正确,为什么?,思考:,定义,:,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做,棱柱,。,三棱柱,四棱柱,五棱柱,侧棱不垂直于底的棱柱叫做,斜棱柱,。,侧棱垂直于底的棱柱叫做,直棱柱,。,底面是正多边形的直棱柱叫做,正棱柱,。,2,、棱柱的分类:,棱柱的底面可以是三角形、四边形、五边形、,我们把这样的棱柱分别叫做,三棱柱、四棱柱、五棱柱、,3,、棱柱的表示法,(,下图,),用平行的两底面多边形的字母表示棱柱,如:棱柱,ABCDE-A,1,B,1,C,1,D,1,E,1,。,课堂练习,:,1.,下面的几何体中,哪些是棱柱?,二、棱锥的结构特征,观察下列几何体,有什么相同点?,1,、棱锥的概念,有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。,棱锥的底面,棱锥的侧面,棱锥的顶点,棱锥的侧棱,S,A,B,C,D,E,下列命题是否正确?,有一个面是多边形,其余各面都是三角形的立体图形一定是棱锥,.,思考,明矾晶体,2,、,棱锥的分类,:,按底面多边形的边数,可以分为三棱锥、四棱锥、五棱锥、,A,B,C,D,S,3,、,棱锥的表示方法:,用表示顶点和底面的字母表示,如四棱锥,S-ABCD,。,4,、,如果一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥是,正棱锥,.,三、棱台的结构特征,B,C,A,D,S,B,1,A,1,C,1,D,1,D,B,C,A,C,1,B,1,A,1,D,1,1,、棱台的概念:,用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的部分叫做棱台。,D,B,C,A,C,1,B,1,A,1,D,1,上底面,下底面,侧面,侧棱,顶点,2,、由三棱锥、四棱锥、五棱锥,截得的棱台,分别叫做,三棱台,四棱台,五棱台,3,、,棱台的表示法:棱台用表示上、下底面各顶点的字母来表示,如右图,,棱台,ABCD-A,1,B,1,C,1,D,1,。,D,B,C,A,C,1,B,1,A,1,D,1,4,、用正棱锥截得的棱台叫作,正棱台,。,判断,:,下列几何体是不是棱台,为什么,?,(1),(2),辨析,小结:棱柱、棱锥、棱台的结构特征比较,结构特征,棱柱,棱锥,棱台,定义,底面,侧面,侧棱,平行于底面,的截面,过不相邻两,侧棱的截面,两底面是全等的多边形,平行四边形,平行且相等,与两底面是全等的多边形,平行四边形,多边形,三角形,相交于顶点,与底面是相似的多边形,三角形,两底面是相似的多边形,梯形,延长线交于一点,与两底面是相似的多边形,梯形,思考:,既然棱柱、棱锥、棱台都是多面体,那么它们之间有怎样的关系?当底面发生变化时,它们能否相互转化?,棱台的上底面扩大,上下底面全等,棱台的上底面缩小,为一个点,
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 管理文书 > 施工组织


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!