仪器分析ICP(课堂)课件

上传人:沈*** 文档编号:244338920 上传时间:2024-10-03 格式:PPT 页数:92 大小:3.67MB
返回 下载 相关 举报
仪器分析ICP(课堂)课件_第1页
第1页 / 共92页
仪器分析ICP(课堂)课件_第2页
第2页 / 共92页
仪器分析ICP(课堂)课件_第3页
第3页 / 共92页
点击查看更多>>
资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,ICP,发射光谱,分析,1,目 录,1.,原子发射法简介,2.ICP,发射光谱,分析原理,3.ICP,发射光谱仪的构成,4.ICP,发射光谱,分析,方法,5.,样品的前处理,2,1.,原子发射法简介,1.1,概述,1.,定义:,AES,是据每种原子或离子在热或电激发,处于激发态的待测元素原子回到基态时发射出,特征,的电磁辐射而进行元素定性和定量分析的方法。,3,2.,历史:,4,3.,原子发射光谱分析的特点,(1),多元素同时检测能力。可同时测定一个样品中的多种元素。每一个样品一经激发后,不同元素都发射特征光谱,这样就可同时测定多种元素。,(2),分析速度快。若利用光电直读光谱仪,可在几分钟内同时对几十种元素进行定量分析。分析试样不经化学处理,固体、液体样品都可直接测定。,(3),选择性好。每种元素因原子结构不同,发射各自不同的特征光谱。在分析化学上,这种性质上的差异,对于一些化学性质极相似的元素具有特别重要的意义。例如,铌和钽、锆和铪、几十个稀土元素用其他方法分析都很困难,而发射光谱分析可以毫无困难地将它们区分开来,并分别加以测定。,5,(4),检出限低。一般光源可达,10,0.1g,g,-1,(或,g,cm,-3,),绝对值可达,1,0.01g,。电感耦合高频等离子体(,ICP,)检出限可达,ng,g,-1,级。,(5),准确度较高。一般光源相对误差约为,5,10,,,ICP,相对误差可达,1,以下。,(6),试样消耗少。,(7) ICP,光源校准曲线线性范围宽可达,4,6,个数量级。这样可测定元素各种不同含量(高、中、微含量)。一个试样同时进行多元素分析,又可测定各种不同含量。目前,ICP-AES,已广泛地应用于各个领域之中。,(,8,)常见的非金属元素如氧、硫、氮、卤素等谱线在远紫外区,目前一般的光谱仪尚无法检测;还有一些非金属元素,如,P,、,Se,、,Te,等,由于其激发电位高,灵敏度较低。,6,1.2,原子发射几个基本概念,1.,灵敏线:激发电位较低的谱线,常为原子线(电弧线),或离子线(火花线)。与实验条件有关。,2.,共振线:从激发态到基态的跃迁所产生的谱线。由最低能级的激发态到基态的跃迁称为第一共振线。一般也是最灵敏线。与元素的激发程度难易有关。,3.,最后线:或称持久线。当待测物含量逐渐减小时,谱线数目亦相应减少,当,c,接近,0,时所观察到的谱线,是理论上的灵敏线或第一共振线。,4.,分析线:在进行元素的定性或定量分析时,根据测定的含量范围的实验条件,对每一元素可选一条或几条最后线作为测量的分析线。,5.,自吸线:当辐射能通过发光层周围的蒸汽原子时,将为其自身原子所吸收,而使谱线强度中心强度减弱的现象。,6.,自蚀线:自吸最强的谱线的称为自蚀线。,7,1.3,原子能级图及能级的跃迁,钠原子及,Mg,+,(,I,)能级图,8,激发,发射,能量,离子,激发,态,离子基态,a,b,c,d,a,b,激发,c,电离,d,离子,激发,e,f,g,h,e,离子,发射,f,g,h,原子,发射,激发,态,l,4,l,3,l,2,l,1,能级图,9,激发发光,-,原子光谱的产生,入,-,波长,,C-,光速,,h-,普朗克常数,,E,0,-,基态能级能量,,E,m,-,激发态能量,汞的第一激发态为,4 . 9ev,,,10,一些元素的离子化势能,(eV),Lit.: Zaidel,11,原子发射光谱法包括了三个主要的过程,即:,1,)由光源提供能量使样品蒸发、形成气态原子、并进一步使气 态原子激发而产生光辐射;,2,)将光源发出的复合光经单色器分解成按波长顺序排列的谱线,形成光谱;,3,)用检测器检测光谱中谱线的波长和强度。,12,不同的原子具有不同的能级,在一般的情况下,原子处于能量最低的状态,即基态,当电子或其他粒子与原子相互碰撞,如果其动能稍大于原子的激发能,就可使该气态原子获得一定的能量,从原子的基态过渡至某一较高能级,这一过程叫做激发。,+,激发,13,电子返回低能级,发出特定波长的光,D,E=k/,l,k,=12400,光,+,发射,14,多种能量传输,发射光取决于能级间能量差,返回基态,发出光,+,激发,态,D,E = h,n,= hc/,l,h = Plancks,常数,n,=,频率, c =,光速,l,=,波长,原子光谱的产生,15,1.4.,AES,定性定量原理,量子力学基本理论告诉我们:,1,)原子或离子可处于不连续的能量状态,该状态可以光谱项来描述;,2,)当处于基态的气态原子或离子吸收了一定的外界能量时,其核外电子就从一种能量状态(基态)跃迁至另一能量状态(激发态);,3,)处于激发态的原子或离子很不稳定,经约,10-8,秒便跃迁返回到基态,并将激发所吸收的能量以一定的电磁波辐射出来;,4,)将这些电磁波按一定波长顺序排列即为原子光谱(线状光谱);,5,)由于原子或离子的能级很多并且不同元素的结构是不同的,因此对特定元素的原子或离子可产生一系不同波长的,特征光谱,,通过识别待测元素的特征谱线存在与否进行定性分析,定性原理,。,16,浓度,I,强度,0,C,I,C,定量分析原理,17,在光谱定量分析中,谱线强度与被测元素浓度成正比,而自吸严重影响谱线强度。所以,在定量分析时必须注意自吸现象。,在一定的实验条件下,单位体积内的基态原子数目,N,o,和元素浓度,C,的关系为,N,o=,aC bq,式中,,b,为自吸系数,当浓度很低时,原子蒸气的厚度很小;,b,=1,,即没有自吸。,a,与,q,是与试样蒸发过程有关的参数;不发生化学反应时,,q,=1,,,a,又称为有效蒸发系数 。,这样经简化后就成为:,I,=,AC b,式中,,A,为与测定条件有关的系数。式为原子发射光谱,定量分析,的基本公式。,18,1.5,原子发射光谱仪的基本构成,AES,仪器主要由光源(热源)、进样系统、单色系统、检测系统、计算机数据处理系统五部分组成。由于在后面的,ICP,中要涉及各个部分,因此,这里就不作详细介绍了。,为了方便起见,我们可先看看,AES,所用到的光源,并比较其各自的特征:,19,光源,电弧,电感耦合等离子体,,ICP,现代光源,经典光源,火花,直流电弧,交流电弧,火焰,激光光源,1.5.1 AES,光源种类,20,1.5.2 AES,光源的比较,光,源,蒸发温度,K,激发温度,K,稳定,性,热性质,分析,对象,直流电弧,800,40,00(,高,),4000,7000,较差,LTE,定性、难熔样品及元素定量、,导体、矿物纯物质,交流电弧,中,4000,7000,较好,LTE,矿物、低含量金属定量分析,火,花,低,10000,好,LTE,难激发元素、高含量金属定量,分析,ICP,10000,6000,8000,很好,非,LTE,溶液、难激发元素、大多数元,素,火,焰,2000,3000,2000,3000,很好,LTE,溶液、碱金属、碱土金属,激,光,10000,10000,很好,LTE,固体、液体,21,2.ICP,发射光谱,分析,原 理,22,2.1,什么是,ICP,ICP,(,Inductive Coupled Plasma,)即为电感耦合高频等离子体光源。,等离子体(,Plasma,):,一般指电离度超过,0.1%,被电离了的气体,这种气体不仅含有中性原子和分子,而且含有大量的电子和离子,且电子和正离子的浓度处于平衡状态,从整体来看是出于中性的。,利用电感耦合高频等离子体(,ICP,)作为原子发射光谱的激发光源始于上世纪,60,年代。,其特点:,高温,下电离的气体,(,Ionized,gas,),;,离子状态,;,阳离子和电子数几乎相等,;,等离子体的温度较高,,最高温度,10000K,。,23,2.2 ICP,形成的原理,ICP,装置由,:,高频发生器和感应线圈,;,炬管和供气系统,;,进样系统,;,三部分组成,高频发生器的作用是产生高频磁场以供给等离子体能量。应用最广泛的有自激发生器和利用石英晶体压电效应产生高频振荡的他激式高频发生器,其频率和功率输出稳定性高。频率多为,27-50 MHz,,最大输出功率通常是,1-4kW,。,等离子体,磁力线,高频耦合线圈,样品,粒子,24,2.2.1,高频电感耦合等离子体震荡电路,25,2.2.2 ICP,进样系统及等离子炬管,将样品溶液雾化连续导入,ICP,中,ICP,火焰,高频线圈,等离子炬管,样品,溶液,雾室,雾化器,冷却气,(Ar),等离子,(,辅助,),气,(Ar),26,ICP,焰明显地分为三个区域:,1,)焰心区呈白色,不透明,是高频电流形成的涡流区,等离子体主要通过这一区域与高频感应线圈耦合而获得能量。该区温度高达,10000K,。,内焰区位于焰心区上方,一般在感应圈以上,10-20mm,左右,略带淡蓝色,呈,2,)半透明状态。温度约为,6000-8000K,,是分析物原子化、激发、电离与辐射的主要区域。,3,)尾焰区在内焰区上方,无色透明,温度较低,在,6000K,以下,只能激发低能级的谱线。,27,2.2.3 ICP,光源的气流,冷却气,起冷却作用,保护石英炬管免被高温融化,辅助气,“,点燃”等离子体,雾化气,形成样品气溶胶,将样品气溶胶引入,ICP,对雾化器、雾化室、中心管起清洗作用,28,2.2.4,等离子炬管,等离子炬管,分为输入载气,Ar,的内层管、输入辅助气,Ar,的中层管和输入等离子气,Ar,的外层管。,外层管:,外层管通,Ar,气作为冷却气,沿切线方向引入,并螺旋上升,其作用:第一,将等离子体吹离外层石英管的内壁,可保护石英管不被烧毁;第二,是利用离心作用,在炬管中心产生低气压通道,以利于进样;第三,这部分,Ar,气流同时也参与放电过程,中层管:,中层管通人辅助气体,Ar,气,用于点燃等离子体。,内层管:,内层石英管内径为,12mm,左右,以,Ar,为载气,把经过雾化器的试样溶液以气溶胶形式引入等离子体中。,29,炬管的组成:三层石英同心管组成(如上图)。冷却(等离子)氩气以外管内壁相切的方向进入,ICP,炬管内,有效地解决了石英管壁的冷却问题。防止其被高温的,ICP,烧熔。炬管置于高频线圈的正中,线圈的下端距中管的上端,2-4mm,,水冷的线圈连接到高频发生器的输出端。高频电能通过线圈耦合到炬管内电离的氩气中。当线圈上有高频电流通过时,则在线圈的轴线方向上产生一个强烈振荡的环形磁场如图所示。开始时,炬管中的原子氩并不导电,因而也不会形成放电。当点火器的高频火花放电在炬管内使小量氩气电离时,一旦在炬管内出现了导电的粒子,由于磁场的作用,其运动方向随磁场的频率而振荡,并形成与炬管同轴的环形电流。,2.3 ICP,光源的装置及其形成,30,原子、离子、电子在强烈的振荡运动中互相碰撞产生更多的电子与离子。终于形成明亮的白色,Ar-ICP,放电,其外形尤如一滴刚形成的水滴。在高度电离的,ICP,内部所形成的环形涡流可看作只有一匝的变压器次级线圈,而水冷的工作线圈则相当于变压器的初级线圈,它们之间的耦合,使磁场的强度和方向随时间而变化,受磁场加速的电子和离子不断改变其运动方向,导致焦耳发热效应并附带产生电离作用。这种气体在极短时间内在石英的炬管内形成一个新型的稳定的“电火焰”光源。,样品经雾化器被气动力吹散击碎成粒径为,1-10um,之间的细粒截氩气由中心管注入,ICP,中,雾滴在进入,ICP,之前,经雾化室除去大雾滴使到达,ICP,的气溶胶微滴快速地去溶、蒸发和原子化。,31,2.4 ICP-AES,可测定的元素及范围,32,ICP-AES,不便测定的元素,卤族元素中溴、碘可测,氟、氯不能测定,.,惰性气体可激发,灵敏度不高,无应用价值,.,碳元素可测定,但空气二氧化碳本底太高,.,氧,氮,氢可激发,但必须隔离空气和水,.,大量铀,钍,钚放射性元素可测,但要求防护条件,33,应用范围,常量分析,0.X%-20%,微量分析,0.00X%-0.X%,痕量分析,:0.0000X%-0.000X%,一般需要分离和富集,不宜用于测定,30%,以上的,准确度难于达到要求,.,34,2.5 ICP,发射光谱分析的基本原理,ICP,发射光谱分析过程主要分为三步,即激发、分光和检测,.,利用等离子体激发光源(,ICP,)使试样蒸发汽化,离解或分解为原子状态,原子可能进一步电离成离子状态,原子及离子在光源中激发发光。,利用光谱仪器将光源发射的光分解为按波长排列的光谱。,利用光电器件检测光谱,按测定得到的光谱波长对试样进行定性分析,按发射光强度进行定量分析,35,I = N,m,h=KN,m,N,0,e,-E,m,/ kT,(1),在一定的实验条件下,:,I = aC (2),a,为常数,,C,为目的元素的浓度,考虑某些情况下有一定程度的谱线自吸,对,(2),加以修正,I = aC,b,(3),b,为自吸系数,一般情况下,b1,。在,ICP,光源中多数情况下,b1,。,谱线强度与浓度的关系,36,ICP-AES,的特长,溶液进样,、,标准溶液易制备,高灵敏度,(,亚ppb,),高精度,(,CV 1%,),化学干扰少,线性范围宽,(,个数量级,),可同时进行,多元素,的定性定量分析,37,可以分析的样品,1:,金属,(,钢铁,有色金属,),2:,化学,药品,石油,树脂,陶瓷,3:,生物,医药,食品,4:,环境,(,自来水,环境水,土壤,大气粉尘,),5:,可以分析其他各种各样样品中的金属,备注,:,固体样品必须进行前处理,(,液化,),38,3.ICP,发射光谱仪的构成,39,ICPAES,结构示意图,40,ICP-AES,光谱仪结构,溶液,-,雾化 发光 元素 光,-,电信号 结果,41,3.1 R.F,高频发生器,27.12MHz,40.68MHz,高频发生器,输出功率稳定性好、点火容易、发热量小、火焰稳定、有效转换功率高、能对不同样品及不同浓度变化时抗干扰能力强。,42,高频电感耦合等离子体震荡电路,43,3.1.1 ICP,进样系统及等离子炬管,将样品溶液雾化连续导入,ICP,中,ICP,火焰,高频线圈,等离子炬管,样品,溶液,雾室,雾化器,冷却气,(Ar),等离子,(,辅助,),气,(Ar),44,Fassel,炬管,45,气动雾化器,(,同心型,),46,3.1.2,气动雾化器,气动雾化器的结构简单,通常分为同轴型雾化器和直角型雾化器。,同轴型雾化器结构简单,易于制作,应用较为普遍。直角型雾化器不易被悬浮物质堵塞。但雾化效率较低,喷嘴容易堵塞,进样速度受载气压力的影响。改用蠕动泵驱动雾化器,可避免载气压力对样品提升量的影响。,47,旋流雾室,48,双筒雾室,49,雾室,双筒雾室,旋流雾室,50,3.1.3,等离子炬观测位置,轴向和横向观测任选,用轴向观测提高灵敏度,横向观测分析高浓度的样品,51,轴向和横向观测,横向,(,Radial View,),Sample Introduction,Plasma,Torch,PMT detector,Grating,横向观测的特点,可以进行高浓度(百分含量)的测定,离子化干扰小,可以进行高盐有机溶剂的测定,轴向,(,Axial View,),PMT detector,Grating,Plasma,Sample Introduction,Torch,轴向观测的特点,去除氩的光谱、只有元素光谱高效率地导入分光器,可以提高分析灵敏度,52,PMT,检测器,光栅,等离子体,矩管,球面,准直镜,UV,光谱,球面,聚光镜,IR,光谱,3.2 ICP-AES,分光器,选择分辨出目的元素的特征谱线,53,3.3,检测器,-,光电倍增管,光电倍增管工作原理图,阴极,二次电子倍增原理,54,3.3.1,检测器,-,固态成像器件,CID,CCD,55,CID,和,CCD,检测器,CID,检测器,最初发明用于天文学,以解决在较长时间爆光时,亮的星体所引起的“溢出”问题,观察遥远星体的发射光,通过天文望远镜采集光信号,用光谱仪进行分光,测定不同谱线的强度,确定所观察星体的金属组成,CCD,检测器,最初用于电子记录成像,56,掺杂的硅晶体吸收光子,一定面积的芯片(像素)产生电子,CCD,的工作原理,电子的传输通过不同的芯片进行,每个像素的读出,放大和传输得到相应的电压值,57,3.4,计算机功能,程序控制:仪器各部件的起动、关闭,时实控制:时间监控、远程诊断、信息转移,数据处理,谱线数据库专家系统,58,固定多道型,单道扫描型,全谱直读型,ICP,发射光谱仪的几种类型,3.5 ICP,常见的几种类型,59,3.5.1,固定多通道型光谱仪,多元素同时测定,分析速度快,分析精度高、稳定性好,操作简单,消耗少,必须根据用户需求预先排定,PMT,和出射狭缝,,灵活性差,60,3.5.2,多道直读光谱仪,61,3.5.3,单道扫描型光谱仪,谱线选择灵活,定量、定性和半定量分析,仪器价格低,分析速度慢,精度稍差,62,单道扫描光谱仪,63,3.5.4,全谱直读型光谱仪,全谱直读式的等离子光谱仪,它采用中阶梯光学系统结合固体检测器,(CID,,,CCD),,既具有单道的灵活性,又有多道的快速与稳定。,+,64,全谱直读光谱仪,65,4.ICP,发射光谱,分析,方法,66,定性分析,定量分析,半定量分析,需进行使样品溶液化的前处理,ICP,发射光谱,分析,方法,67,定性分析,定性分析,要确认试样中存在某个元素,需要在试样光谱中找出三条或三条以上该元素的灵敏线,并且谱线之间的强度关系是合理的;只要某元素的最灵敏线不存在,就可以肯定试样中无该元素。,68,定量分析,工作曲线法,标准样品的组成与实际样品一致,在工作曲线的直线范围内测定,使用无干扰的分析线,69,定量分析,标准加入法,测定范围的工作曲线的直线性,溶液中干扰物质浓度必须恒定,应有,1-3,个添加样品,使用无干扰的分析线,进行背景校正,70,定量分析,内标法,在试样和标准样品中加入同样浓度的某一元素(内标元素),利用分析元素和内标元素的谱线强度比与待测元素浓度绘制工作曲线,并进行样品分析。,71,半定量分析,半定量分析,有些样品不要求给出十分准确的分析数据,允许有较大偏差,但需要尽快给出分析数据,这类样品可采用半定量分析法,。,ICP,光源的半定量分析尚无通用方法,因仪器类型和软件功能而异,应用不广泛。,72,灵敏度 、检出限、背景等效浓度,灵敏度:,S=dX/dc,单位浓度变化所引起的响应量的变化,它相当于工作曲线的斜率,检出限,: ICP,光谱分析中,能可靠地检出样品中某元素的最小量或最低浓度,.,背景等效浓度,(BEC),:与背景信号相当的浓度。,73,ICP,发射光谱,分析,中的干扰,物理干扰,化学干扰,电离干扰,光谱干扰,74,干扰的校正,基体匹配,可消除物理、电离干扰。注意不纯物的混入。,内标校正,可消除物理干扰。注意内标元素的选择,(,电离电位,),。,背景校正,75,扣除光谱背景,76,谱线干扰的校正,选择无干扰的谱线,干扰系数法校正谱线干扰,稀释样品,77,5.,样品的前处理,78,待测元素完全进入溶液,溶解过程待测元素不损失,不引入或尽可能少引入影响测定的成分,试样溶剂具有较高的纯度,易于获得,操作简便快速,节省经费等,溶解样品的基本要求,79,稀释法,用纯水、稀酸,、,有机溶剂直接稀释样品,。,只适用于均匀样品,例)排,放,水、,电镀,液、,润滑油等,干式灰化分解法,在马弗炉中加热样品,使之灰化,。,可同时处理多个样品。,注意,低沸点元素,Hg,As,Se,Te,Sb,的挥发,例)食品、,塑料,、,有机物粉末等,样品的前处理,(溶液化),80,湿式分解,法,常规酸消化,样品,+,酸,(,300,),于烧杯或三角烧瓶中,在电热板,或电炉上加热。,常规酸消化的优点是设备简单,适合处理大批量样品;缺点是操作难度大,试剂消耗量大、每个试样的酸消耗量不等,试剂空白高且不完全一致、消解周期长、劳动条件较差。,样品的前处理,(溶液化),81,高压密封罐消解,高压密封罐由聚四氟乙烯密封罐和不锈钢套筒构成。试样和酸放在带盖的聚四氟乙烯罐中,将其放入不锈钢套筒中,用不锈钢套筒的盖子压紧密封聚四氟乙烯罐的盖子,放入烘箱中加热。加热温度一般在,120180,。聚四氟乙烯罐的壁较厚,导热慢一般要加热数小时。停止加热后必须冷却才能打开。溶剂:硝酸;硝酸,+,过氧化氢,酸消耗量小,试剂空白低,试样消解效果好,金属元素几乎不损失,环境污染小。分解周期长。,82,微波消解,微波消解也是一种在密封容器中消化的手段。它具有,高压密封罐法所有的优点。消解速度比高压密封罐法,快得多。,试剂消耗量小,金属元素几乎不损失,不受环境污染,,空白低。使用硝酸可消化大多数有机样品。,微波炉的价格较高,试样处理能力不如干式灰化和常规,消化法。,83,器皿的洗涤,使用后的玻璃及聚四氟乙烯器皿用一般蒸馏水冲洗,3,次。,浸没在,6N,的硝酸溶液中,5,天以上。,取出后分别用一般蒸馏水冲洗,5,次以上,高纯水冲洗,3,次。,器皿的存放,置于无灰尘处自然凉干。(可盖保鲜膜等),容量瓶可装满高纯水存放,84,6.,仪器的维护和保养,85,注意事项,进样前进样系统的检查。,测定后进样系统的检查和清洗。,废液桶中的废液要经常清理。,炬管,雾化器,雾室的清洗。,冷却水,真空泵油,分子筛的定期更换。,86,干扰因素,ICP-AES,光谱干扰,光谱干扰数量多,谱库中有,50,000,条特征光谱。,加上来自如金属材料、矿石和化学品分析中基体的影响,解决起来比较困难。,不同的分子特征基团如,OH,键,也会造成在低含量分析时的干扰。,87,干扰因素,ICP-AES,光谱干扰的消除,离线光谱背景校正。,动态背景校正。,88,干扰因素,ICP-AES,基体效应的干扰,使用内标。,89,ICP-AES,电离效应的干扰,易电离的元素引起的电离干扰。,ICP-MS,更为严重。包括增强或抑制效应。,干扰因素,90,干扰因素,ICP-AES,电离效应的干扰的消除,仪器条件的最佳化,加入电离效应缓冲液,91,个人观点供参考,欢迎讨论,
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 管理文书 > 施工组织


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!