导数及其应用复习小节

上传人:仙*** 文档编号:244225304 上传时间:2024-10-03 格式:PPT 页数:24 大小:465KB
返回 下载 相关 举报
导数及其应用复习小节_第1页
第1页 / 共24页
导数及其应用复习小节_第2页
第2页 / 共24页
导数及其应用复习小节_第3页
第3页 / 共24页
点击查看更多>>
资源描述
,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,*,单击此处编辑母版标题样式,第三章,导数及其应用复习小结,10/3/2024,本章知识结构,导数,导数概念,导数运算,导数应用,函数的瞬时变化率,运动的瞬时速度,曲线的切线斜率,基本初等函数求导,导数的四则运算法则,简单复合函数的导数,函数单调性研究,函数的极值、最值,曲线的切线,变速运动的速度,最优化问题,10/3/2024,曲线的切线,以曲线的切线为例,在一条曲线,C,:,y,=,f,(,x,),上取一点,P(,x,0,,,y,0,),,点,Q(,x,0,+,x,,,y,0,+,y,),是曲线,C,上与点,P,临近的一点,做割线,PQ,,,当点,Q,沿曲线,C,无限地趋近点,P,时,割线,PQ,便无限地趋近于某一极限位置,PT,,,我们就把直线,PT,叫做曲线,C,的在点,P,处的切线。,一知识串讲,10/3/2024,此时割线,PT,斜率的极限就是曲线,C,在点,P,处的切线的斜率,用极限运算的表达式来写出,即,k,=,tan,=,10/3/2024,(一)导数的概念:,1,导数的定义,:,对函数,y,=,f,(,x,),,,在点,x,=,x,0,处给自变量,x,以增量,x,,,函数,y,相应有增量,y,=,f,(,x,0,+,x,),f,(,x,0,),,,若极限 存在,则此极限称为,f,(,x,),在点,x,=,x,0,处的导数,记为,f,(,x,0,),,或,y,|,;,10/3/2024,2,导函数,:如果函数,y,=,f,(,x,),在区间,(,a,,,b,),内每一点都可导,就说,y,=,f,(,x,),在区间,(,a,,,b,),内可导即对于开区间,(,a,,,b,),内每一个确定的,x,0,值,都相对应着一个确定的导数,f,(,x,0,),,这样在开区间,(,a,,,b,),内构成一个新函数,把这一新函数叫做,f,(,x,),在,(,a,,,b,),内的导函数简称导数记作,f,(,x,),或,y,.,即,f,(,x,)=,y,=,10/3/2024,3,导数的几何意义,:函数,y,=,f,(,x,),在点,x,0,处的导数的几何意义,就是曲线,y,=,f,(,x,),在,P,(,x,0,,,f,(,x,0,),处的切线的斜率,即曲线,y,=,f,(,x,),在点,P,(,x,0,,,f,(,x,0,),处的切线斜率为,k,f,(,x,0,),所以曲线,y,f,(,x,),在点,P,(,x,0,,,f,(,x,0,),处的切线方程为,y,y,0,=,f,(,x,0,)(,x,x,0,),4,导数的物理意义,:物体作直线运动时,路程,s,关于时间,t,的函数为:,s,=,s,(,t,),,那么瞬时速度,v,就是路程,s,对于时间,t,的导数,即,v,(,t,)=,s,(,t,).,10/3/2024,返回,10/3/2024,导数的运算法则,:,法则,1:,两个函数的和,(,差,),的导数,等于这两个函数的导数的,和,(,差,),即,:,法则,2:,两个函数的积的导数,等于第一个函数的导数乘第二个函数,加上第一个函数乘第二个函数的导数,即,:,法则,3:,两个函数的积的导数,等于第一个函数的导数乘第二个函数,减去第一个函数乘第二个函数的导数,再除以第二个函数的平方,.,即,:,返回,10/3/2024,当点,Q,沿着曲线无限接近点,P,即,x,0,时,割线,PQ,如果有一个极限位置,PT.,则我们把直线,PT,称为曲线在点,P,处的,切线,.,设切线的倾斜角为,那么当,x0,时,割线,PQ,的斜率,称为曲线在点,P,处的,切线的斜率,.,即,:,P,Q,o,x,y,y=,f(x,),割线,切线,T,返回,10/3/2024,1),如果恒有,f(x,)0,,那么,y=f,(,x),在这个区间(,a,b,),内单调递增;,2),如果恒有,f(x,)0,f,(,x,)0,如果在某个区间内恒有,则 为常数,.,返回,10/3/2024,2),如果,a,是,f,(x)=0,的一个根,并且在,a,的左侧附近,f,(x)0,,那么是,f(a,),函数,f(x),的一个极小值,.,函数的极值,1),如果,b,是,f,(x)=0,的一个根,并且在,b,左侧附近,f,(x)0,,,在,b,右侧附近,f,(x)0,,那么,f(b,),是函数,f(x),的一个极大值,注:导数等于零的点不一定是极值点,2),在,闭区间,a,b,上的函数,y=,f(x,),的图象是一条,连续不断,的曲线,则它,必有,最大值和最小值,.,函数的最大(小)值与导数,x,y,0,a,b,x,1,x,2,x,3,x,4,f(a,),f(x,3,),f(b,),f(x,1,),f(x,2,),返回,10/3/2024,10/3/2024,10/3/2024,10/3/2024,10/3/2024,(五)函数的最大值与最小值:,1,定义:,最值是一个整体性概念,是指函数在给定区间,(,或定义域,),内所有函数值中最大的值或最小的值,最大数值叫最大值,最小的值叫最小值,通常最大值记为,M,,,最小值记为,m,.,10/3/2024,2,存在性:在闭区间,a,,,b,上连续函数,f,(,x,),在,a,,,b,上必有最大值与最小值,3,求最大(小)值的方法:函数,f,(,x,),在闭区间,a,,,b,上最值求法:,求出,f,(,x,),在,(,a,,,b,),内的极值;,将函数,f,(,x,),的极值与,f,(,a,),,,f,(,b,),比较,其中较大的一个是最大值,较小的一个是最小值,.,10/3/2024,10/3/2024,10/3/2024,10/3/2024,例已经曲线,C,:,y=x,3,-x+2,和点,A(1,2),。求在点,A,处的切线方程?,解:,f,/,(x,)=3x,2,1,,,k=f,/,(1)=2,所求的切线方程为:,y,2=2(x,1),即,y=2x,10/3/2024,变式,1,:,求过点,A,的切线方程?,例已经曲线,C,:,y=x,3,-x+2,和点,A(1,2),求在点,A,处的切线方程?,解:变,1,:,设切点为,P,(,x,0,,,x,0,3,x,0,+2,),,切线方程为,y,(x,0,3,x,0,+2)=(3 x,0,2,1,)(,x,x,0,),又,切线过点,A(1,2),2,(x,0,3,x,0,+2)=(3 x,0,2,1,)(1,x,0,),化简得,(x,0,1),2,(2,x,0,+1)=0,,,当,x,0,=1,时,所求的切线方程为:,y,2=2(,x,1),即,y=2x,解得,x,0,=1,或,x,0,=,k=f,/,(x,0,)=3 x,0,2,1,,当,x,0,=,时,所求的切线方程为:,y,2=,(x,1),即,x+4y,9=0,10/3/2024,(,1,)正确理解导数的概念和意义,导数是一个函数的改变量与自变量的改变量的比值的极限,它反映的是函数的变化率,即函数值在,x,=,x,0,点附近的变化快慢;所以只有与变化率有关的问题都可以用导数来解决;,(,2,)掌握求导数的方法,特别是在求复合函数的导数时,一定要把握层次,把每一层的复合关系都看清楚;,(,3,)利用导数来研究函数。主要是研究函数的增减性、函数的极大(小)值、函数的最大(小)值以及一,些与实际相关的问题。,三 小结,:,10/3/2024,
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 管理文书 > 施工组织


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!