资源描述
,Click to edit Master title style,Click to edit Master text styles,Second level,Third level,Fourth level,Fifth level,Click to edit Master title style,Click to edit Master text styles,Second level,Third level,Fourth level,Fifth level,Click to edit Master title style,Click to edit Master text styles,Second level,Third level,Fourth level,Fifth level,*,*,Click to edit Master title style,Click to edit Master text styles,Second level,Third level,Fourth level,Fifth level,*,*,Click to edit Master title style,Click to edit Master text styles,Second level,Third level,Fourth level,Fifth level,*,*,无忧,PPT,整理发布,Click to edit Master title style,Click to edit Master text styles,Second level,Third level,Fourth level,Fifth level,*,*,Click to edit Master title style,Click to edit Master text styles,Second level,Third level,Fourth level,Fifth level,*,*,Click to edit Master title style,Click to edit Master text styles,Second level,Third level,Fourth level,Fifth level,*,*,Click to edit Master title style,Click to edit Master text styles,Second level,Third level,Fourth level,Fifth level,*,*,Click to edit Master title style,Click to edit Master text styles,Second level,Third level,Fourth level,Fifth level,*,*,Click to edit Master title style,Click to edit Master text styles,Second level,Third level,Fourth level,Fifth level,*,*,Click to edit Master title style,Click to edit Master text styles,Second level,Third level,Fourth level,Fifth level,*,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,2020/9/14,#,第三章 正态分布与医学参考值范围,正态分布与医学参考值范围课件,第一节 正态分布,卡尔,弗里德里希,高斯,(,C.F.Gauss,,,1777-1855,),正态分布(,normal distribution,)又称为高斯分布。首先由德国数学家和天文学家德,莫阿弗尔提出,高斯虽然发现稍晚,但他迅速将正态分布应用于天文学,并对其性质作了进一步的研究,使正态分布的应用价值广为人知。,第一节 正态分布卡尔弗里德里希高斯正态分布(norma,一、正态曲线,某地正常成年男子红细胞数的分布情况,图,3-2,图,3-1,图,2-1,一、正态曲线某地正常成年男子红细胞数的分布情况图3-2图3-,二、正态分布的特征,连续型随机变量,X,服从正态分布,记为,X,概率分布函数,概率密度函数,二、正态分布的特征连续型随机变量X服从正态分布,记为X概率,正态分布是单峰分布,以 为中心左右完全对称,正态曲线在 处有拐点,呈现为钟型,正态分布由两个参数 和 决定,正态曲线下的面积分布有一定的规律,是位置参数,决定着正态曲线在,X,轴上的位置,是形状参数,决定着正态曲线的分布形状,Normal distribution,正态分布是单峰分布,以 为中心左右完全对称,图,3-4,图,3-3,Normal distribution,图3-4图3-3Normal distribution,图,3-5,图,3-6,Normal distribution,图3-5图3-6Normal distribution,三、标准正态分布,=,0,、,=,1,的正态分布即为标准正态分布,Standard normal distribution,三、标准正态分布 =0、=1的正态分布即为标准正态分布S,图,3-7,Standard normal distribution,图3-7Standard normal distributi,在区间(,)上的概率(曲线下的面积),当 和 未知时,可以利用样本均数 和标准差 计算,Standard normal distribution,在区间()上的概率(曲线下的面积,例,3-1,若,X,,试计算,X,取值在区间,上的概率。,Standard normal distribution,例3-1 若X ,试计算X 取值在区间Sta,例,3-2,已知某地,140,名正常成年男子红细胞计数近似服从正态分布,,=4.7810,12,/L,,,=0.3810,12,/L,。该地正常成年男子红细胞计数在,4.010,12,/L,以下者占该地正常成年男子总数的百分比;,查附表,1,,表明该地成年男子红细胞计数低于,410,2,/L,者约占该地正常成年男子总数的,2.02%,Standard normal distribution,例3-2 已知某地140名正常成年男子红细胞计数近似服从正态,红细胞计数在,4.010,12,/L,5.510,12,/L,者占该地正常成年男子总数的百分比,=,表明红细胞计数在,4.010,12,/L,5.510,12,/L,者约占该地正常成年男子总数的,95.04%,。,Standard normal distribution,红细胞计数在4.01012/L5.51012/L者,第二节 医学参考值范围,一、医学参考值范围的概念,医学参考值范围,指“正常”人的解剖、生理、生化指标等数据大多数个体值的波动范围。,确切含义是,从选择的参照总体中获得的所有个体观察值,用统计学方法建立百分位数界限,由此得到个体观察值的波动区间。通常情况使用的是,95%,参考值范围。,第二节 医学参考值范围一、医学参考值范围的概念医学参考值范,1.,基于临床实践,从个体角度,作为临床上判定正常与异常的参考标准,即用于划分界限或分类。,2.,基于预防医学实践,从人群角度,可用来评价儿童的发育水平,如制订不同年龄、性别儿童某项发育指标的等级标准。,确定医学参考值范围的意义,确定95%参考值范围示意图,Medical reference range,1.基于临床实践,从个体角度,作为临床上判定正常与异常的参,二、制订医学参考值范围的注意事项,1.,确定同质的参照总体,一般选择,“,正常,”,人,主要是排除了对研究指标有影响的疾病或有关因素的同质人群。,2.,选择足够例数的参照样本,通常情况下,确定参考值范围需要大样本,如果例数过少,确定的参考值范围往往不够准确。,3.,控制检测误差,为保证原始数据可靠,检测过程中要严格控制随机误差,避免系统误差和过失误差。,二、制订医学参考值范围的注意事项1.确定同质的参照总体一般,4.,选择单、双侧界值,依据专业知识确定,研究指标无论过高或过低均属异常,采用双侧界值;有些指标仅过大或者过小为异常,采用单侧界值。,白细胞数参考值范围,血铅参考值范围,肺活量参考值范围,Medical reference range,4.选择单、双侧界值依据专业知识确定,研究指标无论过高或过,6.,选择计算参考值范围的方法,根据资料的分布类型,样本含量的多少和研究目的等,选用适当的方法确定参考值范围。,5.,选择适当的百分数范围,结合专业知识,根据研究目的、研究指标的性质、数据分布特征等情况综合考虑。百分,数,范围,的不同将导致不同的假阳性率和假阴性率。,Medical reference range,6.选择计算参考值范围的方法根据资料的分布类型,样本含量的,三、医学参考值范围的计算方法,百分位数法适合于任何分布类型的资料,在实际中最为常用。由于参考值范围所涉及的常常是波动较大的两端数据,使用百分位数法必须要有较大的样本含量,否则结果不稳定。,正态分布法要求资料服从或近似服从正态分布,优点是结果比较稳定,在样本含量不是很大的情况下仍然能够进行处理;若偏态分布资料经变量变换能转换为正态分布或近似正态分布,仍可用正态分布法。,三、医学参考值范围的计算方法百分位数法适合于任何分布类型的资,Medical reference range,Medical reference range,例,3-3,已知某地,140,名正常成年男子红细胞计数近似服从正态分布,,=,4.7810,12,/L,,,=,0.3810,12,/L,,,估计该地正常成年男子红细胞计数,95%,参考值范围。,近似正态分布资料可按正态分布法处理,因红细胞计数值过大或过小均为异常,故应估计双侧,95%,参考值范围:,即该地正常成年男子红细胞计数的,95%,参考值范围为,4.0410,12,/L,5.5210,12,/L,。,Medical reference range,例3-3 已知某地140名正常成年男子红细胞计数近似服从正态,例,3-4,某年某地测得,100,名正常成年人的血铅含量值,(,g/dl,),,试确定该地正常成年人血铅含量的,95%,参考值范围。,根据经验已知正常成年人的血铅含量近似对数正态分布,因此首先对原始数据作对数变换,经正态性检验可知对数值服从正态分布(,P,0.50,),故编制对数值频数表,再利用正态分布法求,95%,参考值范围。,Medical reference range,例3-4 某年某地测得 100 名正常成年人的血铅含量值(,对数组段,频数,累计频数,0.6,4,4,0.7,2,6,0.8,5,11,0.9,9,20,1.0,12,32,1.1,15,47,1.2,18,65,1.3,14,79,1.4,12,91,1.5,5,96,1.6,3,99,1.7,1.8,1,100,合计,100,4,4,5,5,6,6,7,7,7,7,7,8,8,8,8,8,8,8,9,9,10,10,10,10,10,10,10,10,11,11,11,12,13,13,13,13,13,13,13,13,13,13,14,14,14,15,15,16,16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,18,19,20,20,20,20,21,21,22,22,22,23,24,24,25,25,26,26,26,27,27,28,28,29,30,30,31,31,32,32,32,33,35,41,44,50,51,表,3-2,某年某地,100,名正常成年人血铅含量(,g/dl,),对数值频数表,对数组段 频数累计频数0.6 4 40.7,依据表,3,-,2,,设,X,为
展开阅读全文