八年级数学 二次根式知识点总结及练习题大全

上传人:奇异 文档编号:24373722 上传时间:2021-06-28 格式:DOC 页数:5 大小:181.50KB
返回 下载 相关 举报
八年级数学 二次根式知识点总结及练习题大全_第1页
第1页 / 共5页
八年级数学 二次根式知识点总结及练习题大全_第2页
第2页 / 共5页
八年级数学 二次根式知识点总结及练习题大全_第3页
第3页 / 共5页
点击查看更多>>
资源描述
二次根式1.二次根式:式子(0)叫做二次根式。2.最简二次根式:必须同时满足下列条件:被开方数中不含开方开的尽的因数或因式; 被开方数中不含分母;分母中不含根式。3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。(0)(0)0 (=0);4.二次根式的性质:(1)()2= (0); (2)5.二次根式的运算: (1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式=(a0,b0); (b0,a0)(4)有理数的加法交换律、结合律,乘法交换律及结合律,乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算【典型例题】 (2)、平方法当时,如果,则;如果,则。例1、比较与的大小。 例2、比较与的大小。(3)、分母有理化法通过分母有理化,利用分子的大小来比较。例3、比较与的大小。一. 利用二次根式的双重非负性来解题(a0),即一个非负数的算术平方根是一个非负数。)1.下列各式中一定是二次根式的是( )。 A、; B、; C、; D、2.x取何值时,下列各式在实数范围内有意义。(1) (2) (3) (6)(7)若,则x的取值范围是 3.若有意义,则m能取的最小整数值是 ;若是一个正整数,则正整数m的最小值是_4.当x为何整数时,有最小整数值,这个最小整数值为 。5. 若,则=_;若,则 6设m、n满足,则= 。8. 若三角形的三边a、b、c满足=0,则第三边c的取值范围是 二利用二次根式的性质=|a|=(即一个数的平方的算术平方根等于这个数的绝对值)来解题1.已知x,则() A.x0B.x3.x3D.3x02.已知ab,化简二次根式的正确结果是( )A B C D3.若化简|1-x|-的结果为2x-5则( ) A、x为任意实数 B、1x4 C、x1 D、x4 4.已知a,b,c为三角形的三边,则= 5. 当-3x5时,化简= 。三二次根式的化简与计算(主要依据是二次根式的性质:()2=a(a0),即以及混合运算法则)(一)化简与求值1.把下列各式化成最简二次根式:(1) (2) (3) (4) 2.下列哪些是同类二次根式:(1),; (2) ,a3.计算下列各题:(1)6 (2); (3) 4.计算(1)2 5 (二)先化简,后求值: 1. 直接代入法:已知 求(1) (2) 2.变形代入法:(1)变条件:已知:,求的值。 (2)变结论:已知,(1)求的值 (2)求的值 五关于求二次根式的整数部分与小数部分的问题1.估算2的值在哪两个数之间()A12 B.23 C. 34 D.452若的整数部分是a,小数部分是b,则 六二次根式的比较大小(1) (2)5 (3)七实数范围内因式分解: 1. 9x25y2 2. 4x44x21 3. x4+x26 19. 已知:,求的值。20. 已知:为实数,且,化简:。21. 已知的值。5
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 中学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!