糖类生物化学

上传人:cel****460 文档编号:243546503 上传时间:2024-09-25 格式:PPT 页数:172 大小:9.19MB
返回 下载 相关 举报
糖类生物化学_第1页
第1页 / 共172页
糖类生物化学_第2页
第2页 / 共172页
糖类生物化学_第3页
第3页 / 共172页
点击查看更多>>
资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,*,糖类生物化学,第一节、糖类化学概论,一、糖的概念与分类,1,、糖的概念与化学本质,简单的定义,:多羟基的醛类或酮类化合物,以及它们的衍生物或聚合物。,元素组成,:,CH,2,O,,可以写成,C,m,(H,2,O),n,由通式看糖似乎是由,Carbon+Hydrate,组成的,所以起初人们认为糖是碳的,“,水化物,”,,所以把糖又称为碳水化合物(,Carbohydrate,),。,有些糖并不附合上面的通式,例如:脱氧糖;而甲醛,(CH,2,O),,乙酸,(C,2,H,4,O,2,),,乳酸,(C,3,H,6,O,3,),等则不属于糖类。,在生化研究中,糖的衍生物也属于研究范围。如:氨基糖、磷酸糖等。,常用单词、前缀和后缀,单词,sugar, carbohydrate, saccharides,前缀,Glyco,biology,Glyco,protein,Glyco,lipid,后缀,-ose, -,saccharide,or -,glycan,Gl,u,c,ose,(葡萄糖),Fru,ctose,(果糖),Gal,actose,(半乳糖), Sucrose,(蔗糖),2,、糖的分类,(,classification,),1,),单糖,(,mono,saccharide,):是多羟醛或多羟酮,不能被水解变成更简单的糖的糖类(更小分子的糖)。,碳原子数目,:,丙糖,(triose),,丁糖,(terose),,戊糖,(pentose),、己糖,(hexose),庚糖,(Heptose),辛糖,(Octose),。,醛糖,(,aldose,如:葡萄糖,gl,u,c,ose,)、,酮糖,(,Ketose,如:果糖,fru,ctose),。,2,),寡糖,(,oligo,saccharide,):又称低聚糖,由,2,10,分子单糖由糖苷键连接而成。可分为二糖(最常见)、三糖、四糖、 五糖等。,如,:,麦芽糖,(maltose,,,蔗糖,Glc(1-2),果糖,Fru,),;,乳糖,(lactose,,,-D-,半乳糖,(gal),与,D-,葡萄糖(,glc,)通过,1,4,糖苷键连接,),;,蔗糖,(sucrose,,,-D-,葡萄糖通过,1,4,糖苷键连接,),。,3,),.,多糖,(,polysaccharide,):由多分子单糖或单糖的衍生物聚合而成。,同多糖,(,homopolysaccharide,):由同一种单糖聚合而成,如淀粉、糖原、纤维素等。,杂多糖,(,heteropolysaccharide,):由不同种 单糖或单糖的衍生物聚合而成,如透明质酸等。,4),、,结合糖,(,复合糖,糖缀合物,),:糖类还可和非糖物质如脂类、蛋白质等结合形成复合糖(,complex saccharide,),如肽聚糖、脂多糖、糖蛋白,(,蛋白聚糖,),、糖,-,核苷酸等,糖作为功能分子,主要是复合多糖。,5),、,糖的衍生物:糖醇、糖酸、糖胺、糖苷,二、糖的分布及其重要性,糖是世界上存在最多的一类有机化合物,也是人类所需要的最基础的物质。几乎所有的动物、植物和微生物体内都含有糖类,糖的世界,食用,糖,蔗糖,(,sucrose),医疗,用糖,glucose,及其衍生物,如葡萄糖酸的钠、钾、钙、锌盐等,;,绿色植物的,皮,、,杆,等多糖,cellulose,;,粮食,及,块根,、,块茎,中的糖,starch,;,动物体内的,贮藏多糖,glycogen,;,昆虫、蟹、虾等,外骨骼糖,chitin,;,食用菌,中的糖,香菇多糖,Lentinan,、茯苓多糖,Pachymaran,、灵芝多糖,Ganoderma lucidum polysaccharide,、,昆布多糖,Laminarine,等,;,细菌、酵母的,细胞壁糖,;,结缔组织中的糖,肝素、透明质酸、硫酸软骨素、硫酸皮肤素等,;,核酸,的糖、,脂多糖,糖脂,、,糖蛋白,蛋白聚糖,中的,糖,;,细胞膜,及其他细胞结构中的,糖以及其他生物活性糖,分子。,糖类的主要生物学作用,1,是生物体主要的,能量来源,。,生物体内的,能源,来源主要是通过糖的氧化获得的。,2,可转变为生命所必需的其它物质,如脂类、 蛋白质等。,构成生物有机体中包括蛋白质、核酸、脂类在内的各种有机物质的碳架都是直接或间接地由糖类物质转化而来的,所以糖是生物体合成其它化合物的基本,原料,。,3,可作为生物体的,结构物质。,如纤维素、它是构成植物细胞壁的主要成份。,几丁质和肽聚糖,是构成微生物细胞壁的主要成份。还有些多糖作为动物细胞外的间质中的构造分子。,4.,作为细胞、生物体的,贮藏物质,如植物里合成淀粉,动物细胞中有糖原等。,5,可作为细胞识别的,信息分子,。,参与细胞与细胞的识别(分子识别)与细胞通讯;,参与病毒的吸附及抗原抗体的反应。,提要:,糖,单糖,寡糖,多糖,结合糖,糖的生物学意义,单词,sugar, carbohydrate, saccharides,前缀,Glycobiology, Glycoprotein, Glycolipid,后缀,-ose, -,saccharide,or -,glycan,Glucose,(葡萄糖), Fructose,(果糖), Galactose,(半乳糖), Sucrose,(蔗糖),第二节、单糖,一、单糖的分子结构,1,、单糖的链状结构,2,、单糖的环状结构,3,、单糖的构象,二、单糖的性质,三、重要的单糖及其衍生物,1,、单糖的链状结构:,1),、,确定链状结构的方法(葡萄糖):,经元素组成和相对分子质量测定确定分子式;,与,Fehling,试剂或其它醛试剂反应,说明含有醛基;,与乙酸酐反应,产生具有五个乙酰基的衍生物;说明葡萄糖分子内有,5,个羟基,用钠、汞剂作用,生成直链的山梨醇。,以上说明葡萄糖是个链状的多羟醛,Glu,cose,2),、构型、构象与同分异构,构型,(configuration),:,分子中由于各原子或基团间特有的固定的空间排列方式不同而使它呈现出不同的,稳定的立体结构,。,构象,(conformation),:,由于分子中的某个原子,(,基团,),绕,C-C,单键自由旋转而形成的不同的,暂时性的易变的空间结构形式,。,同分异构体,(isomerism),同分异构体,(isomerism),:,具有相同的元素组成,即分子式相同但分子结构不同的化合物。,结构异构(,structural isomerism,),:,分子中原子连接次序(,构造(,constitution,),)的不同造成,用结构式表示。,立体异构(,stereoisomerism,),:,具有相同的结构式,但原子空间的分布(即构型,,configuration,)不同。可以分为,几何(顺反)异构,和,旋光(光学)异构,立体异构,几何异构(顺反异构),:由于分子中双键或刚性结构的存在造成的两侧的基团不能自由旋转。,旋光异构:,由于分子内不对称原子(最常见为碳原子),连接在这个原子上面的四个基团由于空间取向的不同,这些基团在空间有两种方式,因此形成了两种不同的化合物(也只能形成两种,称之为,对映体,)。,它们如同左右手的关系一样,有相同的沸点,相同的熔点,相同的溶解度,重要的差别在,生物学,和,旋光性,上。,旋光性,(optical activity),旋光物质使平面偏振光,(Plane polarized liyot),的偏振面发生旋转的能力,称旋光性、光学活性或旋光度。,使平面偏振光的偏振面沿顺时针方向偏转,称为右旋型异构体,(dextrorotary),,用,“,”,表示;,使平面偏振光的编振面逆时针方向偏转,称左旋异构体,(levorotary,)用,“,”,表示。,甘油醛的构型(,DL,、,RS,表示法),1906,年人为规定右旋甘油醛为,D,型,左旋甘油醛为,L,型。,3),、单糖糖链状结构表示方式,一般用,Fisher,投影式:,碳骨架竖直写;氧化程度最高的碳原子在上方,,水平方向的键伸向纸面前方,垂直方向的键伸向纸面后方,。,透视式:,4),、单糖的旋光异构,单糖从丙糖到庚糖,除二羟丙酮外,都含有手性碳原子(,C*,),离醛基或酮基最远的手性碳的构型确定糖的,DL,构型,卢森诺夫,(Rosanoff),规定,凡单糖中直链分子式,最末的一个不对称碳原子,的构型与,D-,甘油醛一致的就称其为,D,型糖,它的,对映体,就是,L,型糖。任何糖都可以看作是由甘油醛或二羟丙酮派生出来的。,DL,仅指一种构型,指以甘油醛为标准而确定的相对构型,不表示旋光方向。旋光方向是以(,+,)(,-,) 来加以表示的。,构型与旋光性之间没有必然的对应规律,5),、,D,系单糖和,L,系单糖,所有的醛糖都可以看成是甘油醛的醛基碳下端逐个插入,C*,延伸而成。,D-,甘油醛衍生而来的称,D,系醛糖,由,L-,甘油醛衍生而来的称,L,系醛糖。,L,系醛糖是相应,D,系醛糖的对映体。,含有,n,个,C*,的化合物,旋光异构体的数目为,2,n,,组成,2,n,/2,对,对映体,。,6),、,差向异构体,(epimer),:,又,称,表异构体,,只有一个不对称碳原子上的基团排列方式不同的非对映异构体,如,D-,葡萄糖与,D-,甘露糖及,D-,半乳糖。,2,、单糖的环状结构,1),、单糖的环状结构的证据,、,变旋现象,(mutarotation):,一般醛类在水溶液中只有一个比旋度,但新配制的葡萄糖水溶液的比旋随时间而变化。, =+112,称,-D-(+),葡萄糖,称,-D-(+),葡萄糖,将这两种葡萄糖分别溶于水后,其旋光率都逐渐变为,这一现象称,变旋现象,。,变旋是由于,分子立体结构发生某种变化,的结果。,、不象醛类那样形成缩醛,而是只和一分子的醇形成半缩醛(,Hemiacetals),、葡萄糖的醛基不能象一般醛类那样与,Schiff,试剂,(,品红,-,亚硫酸)起反应发生紫红色反应,即不能使被亚硫酸漂白了的品红呈现红色。葡萄糖也不能与亚硫酸氢钠起加成反应等,.,2),、,Fisher,环状结构,1893,年,Fisher,提出环状结构说。,半缩醛羟基与末端手性,C,(即决定构型的羟基;,C5,上的羟基)在同一侧的为,-,型,不在同一侧的为,-,型。,(异头物),异头物(体)(,anomer),单糖由直链结构变成环状结构后,羰基碳原子成为新的手性中心,导致,C1,差向异构,化,产生两个非对映异构体(,-D-,葡萄糖,,-D-,葡萄糖),由于差向的位置是第一位,C,,因此也叫,异头体(物),。,练习:,1,、环状己醛糖有多少个可能的旋光异构体?,2,5,32,2,、判断:醛式葡萄糖变成环状后无还原性。,正确,Haworth,式(投影式),不论是,D,型还是,L,型,异头碳羟基与末端羟甲基是反式的为,异头物,顺式为,异头物。,D,葡萄糖由,Fischer,式改写为,Haworth,式的步骤,3),、,吡喃糖和呋喃糖,开链的单糖形成环状半缩醛时,最容易出现五元环,(,呋喃)和六元环(吡喃)。,D-,葡萄糖,在水溶液中主要以吡喃糖存在,呋喃糖次之。,D-,果糖,在水溶液中主要以呋喃糖存在,吡喃糖次之。,练习:,以下化合物中,(1),哪个是半缩酮形式的酮糖?,(2),哪个是吡喃戊糖?,(3),哪个是,-D-,醛糖?,(4),哪个是,-L-,醛糖,?,答案,:(,1,),C,;(,2,),D,;(,3,),B; (4) D,3,、单糖的构象,1,)、构象,(conformation),:,由于分子中的某个原子,(,基团,),绕,C-C,单键自由旋转而形成的,不同的暂时性的易变的空间结构形式,。空间位置的改变,不涉及共价键的断裂。,处于最低能位状态的构象叫优势构象。,2,)、构象的描绘方法,各种不同的构象由于绕单键旋转可以迅速互变,3,)、吡喃糖的构象,吡喃糖环常采取椅式,(chair),和船式,(boat),构象。,吡喃葡萄糖船式的内能比椅式高,因此椅式构象远比船式构象稳定,椅式构象有两种可以互换的可能形式,椅式构象有两种可以互换的可能形式,,互换结果是每个,C,上的直立键和平伏键互换,直立键相连的取代基要比经平伏键连接的取代基彼此靠的更近,斥力也更大,因此,占优势的构象应该是比氢原子大的基团尽可能多的处于平伏键的位置,D,吡喃葡萄糖是,D,己醛糖中唯一一个能采取使所有比氢原子大的基团都处于平伏键的构象,提要,(,单糖的分子结构,),:,构型,(configuration),及其相关概念,Fisher,投影式,主要单糖的投影式,缩写,糖的,DL,构型,变旋现象,(mutarotation),异头物(体),(,anomer),构象,(conformation),吡喃糖的构象,第二节、单糖,一、单糖的分子结构,二、单糖的性质,1,、单糖的物理性质,2,、单糖的化学性质,三、重要的单糖及其衍生物,1,、单糖的物理性质,1,)、旋光性和变旋性:,是鉴定糖(所有)的一个重要指标。,变旋现象,:伴随着异构体间的转变,糖溶液的旋光度也随着转变,这种现象称为变旋现象。,2,)、甜度:以蔗糖的甜度为标准(,100,),糖及甜味剂,甜度,糖及甜味剂,甜度,蛇菊苷,30000,应乐果甜蛋白,20000,果糖,转化糖,蔗糖,葡萄糖,木糖,糖精,173.3,130,100,74.3,40,50000,鼠李糖,麦芽糖,半乳糖,棉子糖,乳糖,天冬苯丙二肽,32.5,32.5,32.1,22. 6,16.1,15000,3,)、溶解性:易溶于水而难溶于乙醚、丙酮等有机溶剂,2,、单糖的化学性质,单糖是多羟基的醛或者酮,其化学性质由醛基、酮基或醇基决定,。,D-Glc,D-,葡萄糖,1,,,2-,烯醇式,葡萄糖,D,Fru,D-,果糖,D,Man,D-,甘露糖,Ba(OH),2,Ba(OH),2,Ba(OH),2,1,)、异构化(弱碱的作用,p15,),在碱性水溶液中单糖发生分子重排,通过烯二醇中间物互相转化,称之为酮烯醇互变异构,2,)、单糖的氧化(,p16,),弱氧化剂:常用含,Cu,2+,的碱性溶液,氧化成糖酸,Fehling,试剂,:,CuSO4,、,NaOH,、酒石酸钾钠,Benedict,试剂,:,CuSO4,、,Na,2,CO,3,、柠檬酸钠,为常用的定量测定还原糖的试剂,温和氧化剂氧化成醛糖酸;,Br,2,H,2,O,强氧化剂氧化成醛糖二酸:如浓,HNO,3,Br,2,H,2,O,(仅限醛糖),浓,HNO,3,(生物体内),糖酸,醛糖,糖二酸,糖醛酸,3,)、单糖的还原(,p17,),H,D-Glc,D,葡萄醇,(山梨醇),H,D,甘露糖(,D-man,),D,甘露醇,H,H,D,Fru,D,葡萄醇,D,甘露醇,单糖的羰基在适当的还原剂如,NaBH,4,存在条件下能被还原成多元醇,4,)、形成糖脎(,Osazone,,,p18,),许多糖可以与苯肼,(C6H5NHNH2),反应生成浅黄色的晶体,脎。各种糖的糖脎都有特异的晶形和熔点,因此常用糖脎的生成鉴定各种不同的糖。,练习,:判断:,D-,葡萄糖,D-,甘露糖和,D-,果糖生成同一种糖脎,。,5,)、脱水反应,单糖在稀的无机酸中是稳定的,但是在强无机酸,(,如:,12%,盐酸,),中加热时可引起糖脱水形成糠醛类物质。,糖 糠醛或糠醛衍生物 紫色,浓,H,2,SO,4,脱水,-,萘酚,Molisch,反应可以,鉴定糖的存在,。,-,萘酚,Molisch,反应,Seliwanoff,s test,(西里瓦诺夫试验,,p20,),Seliwanoff,反应可以,鉴定,酮糖,的存在,。,间苯二酚,6,)、成苷反应(缩醛),糖可以与醇或胺形成糖苷。,糖环中的,半缩醛的羟基,很活泼,易与,其它的醇或酚上的羟基,发生反应,失水而成为缩醛,糖苷,非糖部分叫配糖体,,形成的,C-O,苷键称为,O-,糖苷键,。,糖环中的,半缩醛,也可以与,胺中的氮原子,反应成苷,称为,N-,糖苷键,。,N-,糖苷键存在于糖蛋白和核苷中。,单糖可以通过,O-,糖苷键相互连接形成寡糖和多糖。,糖蛋白中的糖苷键。,核苷中的糖苷键。,7,)、成酯反应,由于单糖是多元醇,当与酸作用时可以生成酯。在生物体内最常见的一类碳水化合物就是糖的磷酸酯。它是糖在酶的作用下与,ATP,反应生成的。是糖代谢的必须步骤。,第二节、单糖,一、单糖的分子结构,二、单糖的性质,三、重要的单糖及其衍生物,1,、重要的单糖,醛糖:,甘油醛、,D-,赤藓糖、,D-,木糖、,D-,核糖、,L-,阿拉伯糖、,D-,葡萄糖、,D-,半乳糖及,D-,甘露糖,酮糖,:二羟基丙酮、,D-,赤藓酮糖、,D-,核酮糖、,D-,木酮糖、,D-,果糖、,D-,景天庚酮糖,2,、重要的单糖衍生物,1,、氨基糖(例如葡萄糖胺,半乳糖胺,甘露糖胺,,N-,乙酰葡萄糖胺等),2,、脱氧糖 (例如岩藻糖,( fucose),, 脱氧核糖等),3,、糖酸 (例如葡萄糖酸,(,gluconate),,,葡萄糖醛酸,(,glucuronate,),),4,、糖醇,5,、糖苷,1,)、氨基糖(,p30,),氨基糖常存在于结构多糖中,如细菌细胞壁中的肽聚糖,(peptidoglycan),,是由,N-,乙酰,-D-,葡萄糖胺,(NAG,GlcNAc),和,N-,乙酰胞壁酸,(NAM),形成的杂多糖;节肢动物外骨骼中的几丁质,(chitin),,是由,N-,乙酰,-D-,葡萄糖胺形成的同多糖。,常见单糖及其衍生物的缩写,单糖常缩写为三个字母,如葡萄糖,Glucose,半乳糖,galactose,果糖,fructose,,甘露糖(,Mannose,)可分别缩写为,Glc, Gal, Fru,,,Man,。(,P31,),2,)、,脱氧糖 (,Deoxy sugars,,,p29,),3,),、糖酸(酸性单糖,,p28,),重要的糖酸有糖醛酸、糖二酸、和糖酸,葡萄糖醛酸,在,肝,中可与有毒物质如醇、酚等结合变成无毒化合物由尿排出体外,可达到,解毒作用,。葡糖酸能够与钙铁等离子形成可溶性盐,作为药物易被吸收,4,),、糖醇(,p26,),几种重要单糖的糖醇在自然界中都有存在,是生物体的代谢产物。不少糖醇也是工业产品,并用于食品和制药工业。,5,)、单糖磷酸酯(,p25,),第三节、寡糖,一、二糖,(Disaccharides),二、其他简单寡糖,一、二糖,(,Di,saccharides),二糖,由两个单糖以糖苷键的形式连接,其中一个是糖体,另一个叫配(糖)体,天然存在的双糖多数以双已糖为主。,根据与裴林试剂的反应性,可以把双糖区分为还原性糖和非还原性糖。,蔗糖(,Sucrose,),乳糖(,lactose,) 和麦芽糖(,maltose,)是自然界最为丰富的二糖。,1,、蔗糖,(Sucrose),蔗糖由,-D-,葡萄糖,(,glc,)与,-D-,果糖,(,fru,)通过,各自的异头碳羟基连接,,为非还原性糖。缩写为,Glc(,1-2,)Fru,或者,Fru(2-1)Glc,。,2,、,乳糖(,Lactose,),乳糖主要存在于乳汁中,由,-D-,半乳糖,(gal),与,D-,葡萄糖,(,glc,)通过,1,4,糖苷键连接,为还原性二糖。 缩写为,Gal(1-4)Glc,。,3,、,麦芽糖,(,Maltose,),麦芽糖是淀粉的水解产物,由,两个,-D-,葡萄糖,通过,1,4,糖苷,键,连接而成,为还原性二糖。缩写为,Glc(,1-4)Glc,。,4,、海藻糖(,Trehalose,),海藻糖是,D-,葡萄糖基(,-1,,,1,),-D,葡萄糖苷,它的两个半缩醛羟基相缩合,为非还原糖。,在蕨类中代替蔗糖成为主要的可溶性储存糖,在昆虫中用作主要血循环糖。,海藻糖酶降解为葡萄糖,5,、纤维二糖(,Cellobiose),纤维二糖是两个,D-,葡萄糖,通过,-1,,,4,糖苷键,连接而成的。,第三节、寡糖,一、二糖,(Disaccharides),二、其他简单寡糖,二、其他简单寡糖(,p39,),1,、三糖,棉籽糖,(Raffinose),棉子糖由,-,半乳糖,,-,葡萄糖,和,-,呋喃果糖聚合而成。,(1,6,糖苷键,,1,2,糖苷键),2,、四糖,水苏糖,(,Stachyose),:棉籽糖家族的一员,四糖,第二个乳糖通过,1,6,糖苷键连接到棉籽糖的半乳糖残基上,3,、,环糊精,芽孢杆菌属有些种环糊精转葡萄糖基移酶作用于淀粉形成。一般由,6,、,7,或者,8,个葡萄糖单位通过,1,4,糖苷,键连接而成。,第四节、多糖,一、概述,二、同多糖,三、杂多糖,一、概述,多糖(,Polysaccharides,),也称之为聚糖,是由很多单糖单位构成的高分子糖类物质,是自然界中糖类的主要存在形式。,储存多糖,(,storage,Polysaccharides,):淀粉、糖原、菊粉等,结构多糖,(,structural,Polysaccharides,):如纤维素、壳多糖、杂多糖等,同多糖,(均一性多糖),(,Homopolysaccharides,),:,组成,单体糖基相同,,例如淀粉,(starch),糖原,(glycogen),纤维素,(cellulose) ,几丁质,(chitin).,杂多糖,(,Heteropolysaccharides,),:,组成的,单体糖基有两种或两种以上,。,第四节、多糖,一、概述,二、同多糖,三、杂多糖,1,、淀粉,(,starch,),淀粉是植物体内贮藏最多而最重要的多糖。,根据结构,可分为:,直链淀粉,(,amylose,),支链淀粉,(,amylopectin,),1,)直链淀粉,直链淀粉由,D-Glc,通过,1-4,键连接而成。,每个分子平均,250-300,个,-D-Glc,,,淀粉高级结构,1-4,糖苷键连接导致葡萄糖残基组成的多聚体紧密盘绕为螺旋结构(,每,6,个,Glc,残基盘旋一圈,),。直链淀粉遇碘显兰色。,2,)支链淀粉,支链淀粉由,2000-22000,个,Glc,残基组成,,大约每,30,个,1-4,键连接的葡萄糖处有一个,1-6,糖苷键,连接的葡萄糖分支。,支链淀粉,与,KI-I,2,显紫色。,每一个直链淀粉分子都有一个非还原端和一个还原端,但每一个支链淀粉和糖原分子都有,一个还原端,和,多个非还原端,。,2,、糖原(,glycogen,),糖原是动物的贮存多糖,,细菌细胞中也有存在,,肝脏、肌肉中含量多,分别称为,肝糖元,、,肌糖元,。遇碘显红紫色。,糖原结构与支链淀粉相似,,主要是,-,吡喃葡萄糖,按,-1,4,糖苷键缩合而的,,糖原的分支程度比支链淀粉更高,。,分支多,(,每隔,4,个葡萄糖残基便有一个分支,含有大量的非原性端,);,分枝短,(,一般是,8-12,葡萄糖残基。,),;,分子量高达,10,6,-10,8,食物中的淀粉和糖原可被唾液和肠液中的,-,淀粉酶降解,,从,非还原端开始,,断裂葡萄糖残基之间的,1,4,糖苷键。,3,、纤维素(,cellulose),绿色植物体内约有,50%,碳存在于以纤维素的形式。,纤维素,类似直链淀粉,由,10,000,至,15,000,个,D-Glc,残基组成,但残基之间,是由,-D-,葡萄糖,分子以,-(1-4),糖苷键相连,而成直链。,1-4,键使得纤维素多糖链采取伸展的构象平行排列,链间和链内存在大量的氢键,形成平行的纤维束。,大多数动物都缺乏裂解纤维素的酶,但有些动物(如白蚁和反刍动物)可以利用体内共生微生物分泌的纤维素酶来消化纤维素。一些真菌能分泌纤维素酶。,4,、,几丁质,(,壳多糖,),(,Chitin,),几丁质大量存在于昆虫和甲壳类动物的甲壳中,也是许多真菌细胞壁常见的组成成分。在天然聚合物中,除纤维素外,几丁质的贮量占第二位。,几丁质,是由,N-,乙酰葡萄糖胺,残基通过,1-4,键,连接而成的,线状不分支的,同多糖。,几丁质与纤维素之间唯一的化学差别是后者,C-2,上的羟基被前者的乙酰氨基取代。,几丁质衍生物在保健及医疗上的应用,主要生理功能:,1.,强化免疫;,2,排除毒素;,3,降血糖,降血脂,降血压;,4,强化肝脏机能;,5,活化细胞,抑制老化;,6,调节自律神经 。,5,、其它同多糖,菊粉(,inulin,),,是由,31,个,果糖,残基通过,-1,2-,糖苷键,连接的果聚糖,另有,1,2,个葡萄糖残基。很多植物的储存多糖,如大丽菊的块茎。,甘露聚糖,在酵母细胞壁中存在,以,-1,4,糖苷键连接。,在一些微生物中存在有另外的一些葡聚糖,常常是,1,6,,或,1,3,链连接的。,第四节、多糖,一、概述,二、同多糖,三、杂多糖,杂多糖(不均一性多糖),在动植物中广泛存在,在水解时产生含许多种单糖的混合物及其衍生物。简单的杂多糖由重复的混合双糖所构成。,果胶,(,Pectin,),半纤维素,(,Hemicellulose,),琼脂,(Agar),和,琼脂糖,(,Agarose,),糖胺聚糖(或称粘多糖),(,Glycosaminoglycan,),1,、植物杂多糖,1,),、果胶(,pectin),果胶是最复杂的一类多糖,通常指各种程度,甲基酯化的,-1,4-,半乳糖醛酸聚糖,.,果胶类物质的化学组成,主要以,-1,4,糖苷键键合的,D,半乳糖醛酸为基本结构,.,其羧基部分或全部甲基酯化,有些含有,-1,2,连接的鼠李糖残基。,2,)、半纤维素(,hemocellulose),是,植物细胞壁中非纤维素、非果胶的一类多糖物质,,易溶于碱,它是几种物质的,混合物,,根据已研究过的材料,半纤维素主要包括多糖类物质(多缩戊糖和多缩已糖的聚合物)。,D-,木聚糖(,D-xylan),、,D-,葡糖,-D-,甘露聚糖、,D-,半乳,-D-,葡,-D-,甘露聚糖、,L-,阿拉伯糖,,D-,半乳聚糖,3,)、琼脂(,agar),琼脂是海藻多糖的一类,它是一组多糖的通称,琼脂糖是琼脂的主要组分。,琼脂糖,(agarose),是由,D-,吡喃半乳糖和,3,,,6-,脱水,-L-,吡喃半乳糖两个单位交替组成的线性链。,2,、糖胺聚糖(或称粘多糖),(,Glycosaminoglycan,),粘多糖,mucopolysaccharides,、糖胺聚,多,糖,glycosaminoglycans,、氨基多糖,polyaminoglucose,及酸性糖胺聚糖等名称。,分布很广,大多以蛋白多糖,proteoglycan,存在,并进一步与胶原蛋白结合构成结缔组织机质的重要成分,如透明质酸、硫酸软骨素、硫酸皮肤素等。,组织类型,机械性能,蛋白质,碳水化合物,骨质,负荷重量,I,型胶原蛋白,硫酸软骨素,抗压、维持外形,透明质酸,硫酸角质素,软肋骨,抗压、减少摩擦,II,型胶原蛋白,硫酸软骨素,弹性好,(硫酸角质素),肌腱,抗张强度大,I,型胶原蛋白,硫酸皮肤素,弹性(延性)小,硫酸软骨素,大血管,延性强,弹性蛋白,硫酸软骨素,抗裂性强,III,型和,I,型胶原蛋白,透明质酸、硫酸皮肤素、乙酰硫酸肝素,关节液,润滑防震,II,型胶原蛋白,透明质酸,皮肤,中度延性,I,型(,80%,)和,III,型胶原蛋白,硫酸皮肤素,韧性,角蛋白,透明质酸,基底膜,变形性、分割,VI,型和,V,型蛋胶原蛋白、昆布,硫酸乙酰肝素(?),选择性透性,氨酸粘连蛋白,角膜,透明、坚固,I,型与,II,型胶原蛋白,硫酸角质素,(硫酸)软骨素,糖胺聚糖由重复的二糖单位组成。其中之一是,葡萄糖胺或者半乳糖胺的衍生物,。另一个常常是,糖醛酸,。,糖残基上的,-OH,常常发生硫酸酯化,使糖胺聚糖带上高度负电荷。这对糖胺聚糖的生理功能有重要意义,分子中的羧基及硫酸等与蛋白等大分子结合。,硫酸软骨素,(,Chondroitin Sulfate,),硫酸角质素,(,Keratan Sulfate,),,肝素,(,Heparin,) 是细胞间质中常见的糖胺聚糖,一般与蛋白质共价连接形成,蛋白聚糖(,proteoglycans,)。,透明质酸,(,Hyaluronate,)是一种不被硫酸化的糖胺聚糖,也不与蛋白质共价连接,(,但是可以非共价结合,如蛋白聚糖,),,而是游离存在。,1,)、透明质酸(,hyaluronicacid),高等动物组织中发现,细菌中也有存在,,主要存在于结缔组织,如眼球玻璃体、鸡冠、脐带、软骨等组织。,主要功能是在,组织中吸水,,有,润滑,剂作用,对组织起,保护,作用。,结构最简单的一种,由重复的二糖结构单位,,D-,葡萄糖醛酸(,D-GlcUA,与),N-,乙酰葡萄糖胺(,GlcNAc,)以,-1,,,3,糖苷键,相连,二糖单位间以,-1,4,糖苷键,连接,分子链状、无分支,分子量很大,可达,1000,万以上。,2,)、硫酸软骨素,(,Chondroitin Sulfate,),软骨的主要成分,广泛存在于结缔组织、筋腱、皮肤等。,分子量一般低于,10,万(约,250,个重复二糖),个别可超过,30,万。,有,4-,硫酸软骨素(硫酸软骨素,A,)和,6-,硫酸软骨素(硫酸软骨素,C,)两种。,软骨素(,Chondroitin,),在结构上软骨素与透明质酸相似,不同在于它含有,N-,乙酰,-D,氨基半乳糖,而不是,N-,乙酰氨基葡萄糖,它是细胞外膜的一个组成成分,.,D-,葡萄糖醛酸,N-,乙酰半乳糖,胺,硫酸软骨素的结构,有,4-,硫酸软骨素,(硫酸软骨素,A,)和,6-,硫酸软骨素,(硫酸软骨素,C,)两种,二糖单位为,D-,葡萄糖醛酸,GlcUA,与,-1,3-N-,乙酰半乳糖胺,GalNAc,以,-1,,,3,相连,糖链生成后由专一性酶在,4,位或,6,位进行硫酸化。,硫酸软骨素的主要生理功能及其应用,与形态的维持、抵御病菌和毒素,以及皮肤创伤的愈合有关。,作为保健食品或保健药品长期应用于防治冠心病、心绞痛、心肌梗塞、冠状动脉机机能不全、心肌缺血等疾病。,硫酸软骨素还应用于滴眼剂、化妆品以及外伤伤口的愈合剂等。,3,)、硫酸角质素,(,Keratan Sulfate,),它是粘多糖中,唯一不含糖醛酸,的多糖聚合物,它由,-D-,半乳糖,和,N-,乙酰葡萄糖胺,通过,-1,4,糖苷键,为二糖单位的聚合体,二聚体又以,-1,3,连接,.,4,)、,肝素(,Heparin,),最早由肝脏和心脏中分离到,以肝脏中丰富,广泛存在于哺乳动物组织和体液中。,结构复杂,由,L,艾杜糖醛酸,L-IduUA,(或者葡萄糖醛酸,D-GlcUA,),和,葡萄糖胺,组成二糖单位,,,同时,C,2,上的,-NH,2,和,C,6,上的,-OH,可分别被硫酸酯化。,常用作,抗凝剂,,防止血栓形成,输血时添加肝素作抗凝剂。,3,、微生物杂多糖,微生物杂多糖主要是构成微生物的细胞壁,以及分泌的一些胞外多糖,.,肽聚糖(,peptideglycan),胞外多糖,肽聚糖(,peptideglycan),肽聚糖是细菌细胞壁的刚性结构的多糖成分,基本构成单位为,N-,乙酰胞壁酸,(,NAG,)和,N-,乙酰葡萄糖胺,(,NAM,),以及一个四肽,,NAG,与,NAM,间相排列,,1,4,糖苷键连接,在,NAM,的乳酸上连接一个四肽。,胞外多糖,细菌的胞外多糖多数是杂多糖,也有的是同多糖。是细菌的荚膜和粘液多糖,可以分为酸性,中性和含氨基这三类。含糖醛酸的酸性多糖占多数。,第五节、结合糖,(Glycoconjugate),糖蛋白,(Glycoprotein),蛋白聚糖,(Proteoglycan),肽聚糖(,peptidoglycan,),糖脂,(Glycolipid),脂多糖,(Lipopolysaccharides ),核苷,(Nucleotide),一、,糖蛋白,(Glycoprotein),1,、概念:,又称之为糖基化蛋白质,是一类由,寡糖类,和蛋白质以共价键连接而成的结合蛋白。,2,、寡糖链的两种连接类型:,1,)、,O-,连接:寡糖链共价连接在蛋白质的,Ser,和,Thr,残基的,羟基氧,上。,2,)、,N-,连接:寡糖链共价连接在肽链的,Asn,残基的,酰胺氮,上。识别序列:天冬酰氨序列子,Asn-X-Ser/Thr,N-,连接寡糖通常具有五糖核心,由三个,Man,和两个,GlcNAc,组成。,3,、糖蛋白的生物合成,N-,连接的糖蛋白,的合成开始于内质网(,ER,) ,在高尔基体(,Golgi,)中完成。,O-,连接的糖苷键修饰,仅仅在高尔基体中发生。,糖蛋白合成后由高尔基,复合体根据蛋白质上的信号,对其进行分类运送。,4,、糖蛋白中糖链的生物学功能,1,)糖蛋白携带某些蛋白质去向的信息(折叠、缔合、分泌、稳定性等),2,)寡糖链在细胞识别、信号传递中起关键作用,二、蛋白聚糖,(Proteoglycan),蛋白聚糖,是由核心蛋白、糖胺聚糖和连接寡糖组成,的大分子复合物。,蛋白聚糖在细胞间质中大量存在,为组织提供粘度、润滑和弹性;在介导细胞粘附中也起到重要作用。,蛋白聚糖中的糖肽键,O-,糖肽键:,D-,木糖与,Ser,羟基之间形成的;,O-,糖肽键:,N-,乙酰半乳糖胺与,Thr,或,Ser,羟基之间形成。,N-,糖肽键:,N-,乙酰葡萄糖胺与,Asn,之间形成的,三、肽聚糖(,peptidoglycan,),肽聚糖,是,细菌细胞壁的主要成分,基本构成单位为,N-,乙酰胞壁酸(,NAG,),和,N-,乙酰葡萄糖胺(,NAM,),,以及一个四肽,,NAG,与,NAM,相间排列,通过,1,4,糖苷键连接,在,NAM,的乳酸上连接一个四肽,糖类部分内容提要:,1,、,单糖,的结构(主要单糖的投影式,简写),构型(,DL,构型)及其相关概念(旋光异构,差向异构,异头体等),构象,性质,2,、,寡糖,,重点几个二糖结构(麦芽糖,蔗糖,乳糖)。,3,、,多糖,,重点是同多糖(淀粉,肝糖原,纤维素,几丁质)糖苷键的类型,高级结构,了解杂多糖。,4,、,结合糖,,了解(糖蛋白,蛋白聚糖,糖肽)。,The end,!,附加材料,多糖的研发,中药多糖,研究非常热门,报道有,100,多种具,免疫调节、抗肿瘤、抗病毒、抗感染、降血糖,等多种生理活性的中药多糖,用于,肿瘤、肝炎、心血管等疾病的辅助治疗和康复,。多糖最重要的药理作用是,免疫促进作用,,功能确切多糖的原生药大多属于,补益,类中药,如人参和黄芪多糖的原生药人参与黄芪是知名的,补气,中药;银耳和枸杞子均是,滋阴,中药,淫羊霍和肉苁蓉多糖的原生药淫羊霍与肉苁蓉是最常用的,壮阳,药;当归及阿胶多糖的原生药当归与阿胶是最具传统的,补血,中药等等。这些功效,都与免疫功能有关,。,多糖的,调节免疫功能,活性,多糖广泛存在于动物细胞膜、植物和微生物的细胞壁中。已从自然界提取出了好几百种多糖。多糖具有许多生物活性:,调节免疫功能,,细胞脂多糖是,淋巴细胞,增殖的专一刺激剂,而对细胞无作用,;,通过补体刺激,巨噬细胞,的作用;对,细胞因子,作用,香菇多糖在体内和体外都能增加腹腔巨噬细胞产生,IL-1,,这种作用可能是香菇多糖直接作用或通过,IL-3,间接作用机理来实现的。香菇多糖对其它免疫功能的调节作用与它促进,IL-1,的合成和分泌有密切的关系。,多糖的,抗肿瘤,活性,从细菌、真菌、酵母、地衣和高等植物中提取的多糖具有,抗肿瘤活性,。其中香菇多糖,裂裥多糖,茯苓多糖和云芝糖肽等已进入,临床应用,。某些多糖还能,对抗化学剂的致癌作用,。多糖作为抗癌剂的最大优点是,毒副作用少,与化疗联合应用有协同作用,,还可对抗化疗药的骨髓抑制等不良反应。有人认为,多糖应用于肿瘤治疗将是一个新的迷人的领域,。实验证明大多数多糖的抗肿瘤作用机理,不是通过直接的杀细胞或抑细胞作用,,而是通过,增强宿主的免疫防御系统,来发挥作用。,多糖的,抗感染,活性,一些多糖通过,增强宿主免疫机制抵抗细菌、病毒和寄生虫的侵袭,。香菇多糖可用于,治疗结核杆菌感染,、对,泡状口角炎病毒,感染引起的小鼠脑炎有显著治疗和预防作用、对,阿伯尔氏病毒和十二型腺病毒,感染也有效,其抗病毒作用与它,诱生,IFN,和提高,NK,细胞活性,有关、在小鼠实验性,寄生虫,模型中,香菇多糖通过促进宿主形成肉芽肿杀伤曼森氏线虫卵。,多糖的,抗凝血,活性,自,1916,年从肝脏提得,肝素,并用作抗凝血剂以来,又发现了,藻酸,(,alginicacid,)、,昆布多糖,、,海带多糖,等有抗凝血作用。肝素是一种应用已久的天然抗凝血剂,通过,抑制凝血蛋白酶原转变为凝血酶,起作用。昆布多糖从褐藻掌状昆布(,laminariadigtata,)提得,该多糖的磺酸化衍生物有肝素样作用。藻酸是由,1,4-,聚,-,-D-,甘露 糖醛酸和,-,古洛糖组成的线状聚合物。具有强的类似肝素的阻凝作用。,多糖的,降血糖,活性,甘蔗茎中的多糖,-,汁液,非蔗糖部分,能,降低小鼠血糖,水平。人参多糖对正常及四氧嘧啶糖尿病小鼠均有显著的降血糖作用,由,-1,,,6,连接的,D-,吡喃葡萄糖单位(,C,3,位置上有一个,-D-,吡喃葡萄糖分支)的多糖有显著的降血糖作用;通过,促进糖分解代谢酶活性和抑制糖元合成酶活性起作用,。,多糖的,降血脂,活性,类肝素,能促进,脂蛋白脂肪酶,的释放 ,使血液中的脂质分解成小分子,对因血脂过多引起的血清混浊有澄清作用,也能,明显降低血胆固醇,;,硫酸软骨素,能增强脂蛋白脂肪酶的活性,使乳麋微粒中甘油三酯分解,从而使血清澄清;,果胶,是由,-,半乳糖醛酸以糖苷键连接而成,可使血胆固醇降低;,茶叶多糖,增强了卵磷脂胆固醇酰基转移酶活性,有利于胆固醇的清除;,波叶大黄多糖,可抑制胰脂肪酶,从而降低脂类物质的消化吸收,促进核酸与蛋白质的生物合成;从,黑木耳、银耳和银耳孢子提得的三种多糖,,对肝病恢复,骨髓造血均有促进作用。,糖生物学,生命科学中的新前沿,糖类和血型,血型在,输血、组织和器官的移植以及法医鉴定,中非常重要。人类的主要血型是,ABO,型。这种血型是,1900,年,Landsteiner,发现的。对第一次世界大战期间伤员抢救作出了重大贡献。,Landsteiner,获得,1930,年诺贝尔生理和医学奖。经过许多免疫学家包括,Landsteiner,和,Watkins,等半个多世纪的研究,,1960,年,Witkins,确定了,ABO(H),的抗原决定簇是糖类,并测定了有关糖类的结构。,糖链与血型,糖基的变化对血型抗原的影响,H,抗原,的前体是糖脂或糖蛋白质中糖链非还原末端的二糖,(Gal-N-GlcNAc),。由于这两个糖基的连接方式不同,又有,1,型和,2,型之分:,13,连接而成的,N-,乙酰半乳糖是,1,型的基础;,14,连接而成的,N-,乙酰半乳糖则衍生出,2,型血型物质。在这两个二糖外侧的半乳糖上再连接有,12,岩藻糖,(Fuc),,就产生了,H1,和,H2,抗原。在,H,抗原上进一步接上,N-GalNAc,或,Gal,之后,则,H,抗原就转变成为,A,抗原或,B,抗原,有,1,型和,2,型之分。仅一个糖基的差异就改变了血型。,糖链与细胞表面的特征,细胞外表面覆盖着一层糖链,-,糖被,。糖蛋白上多分支,N-,糖链,(,分支数可为,2-5),象粗大的树枝,,O-,糖链,象细小的树枝;膜糖蛋白的胞外肽链如树干,穿越质膜的肽段和胞内肽段则是树根;糖脂的脂质插入脂双层的外层,其糖链犹如小草。在细胞表面还包裹着一层作为细胞间质组分的蛋白聚糖,一些蛋白聚糖也能整合到质膜中,统称为糖复合物。它们宛如天线,在,细胞间传递信息,,参与,细胞间的粘附,,,或作为细菌、病毒等病原体的受体,或是作为激素等信息分子的受体,起着积极的生物学作用。,糖链与疾病,糖复合物表面,糖链结构的改变与很多疾病的发生相伴随,。糖链作为自身抗原的疾病有:自身免疫性,甲状腺炎,、,红斑狼疮,等,有人认为,糖尿病也与此有关,。,IgG,糖链与,类风湿病,的关系研究得较为透彻。,IgG,的糖含量略大于,3%,,糖链的功能却鲜为人知。,1981,年,,Deisenhofer,用,X-,射线晶体衍射分析确定了糖基化位点以及糖链的结构是二天线的复杂型,N-,糖链,。,1985,年,木幡阳发现类风湿病人,IgG,糖链中的,Gal,低于正常人,提出了,“,糖病理学,”,的学科新分支,糖链失常与疾病关系,。他和,Dwek,合作确证了这种缺乏,Gal,的,IgG,发生了构象变化,被自身作为异物而产生了相应抗体,在血管和关节等部位出现了免疫复合物的沉积,从而引发类风湿疾病的发生。,糖链和生命现象,1985,年,,Feizi,等提出了,“,糖分化抗原,”,的概念,发育过程中,细胞糖蛋白和糖脂所携带的糖类抗原的改变是通过有序地逐个增加或减少糖残基而完成的,。人类大约有,40-50,亿个细胞,组成了许多细胞集团,每个集团的细胞以不同的方式相互粘附,细胞和基质之间也存在着相互识别和相互作用,集团之间又相互识别、相互作用和相互制约,,调节和控制着高等生物沿着固有的空间轴和时间轴井然有序地发展,。在如此复杂的发展过程中所需的极其巨大的,“,生物信息,”,只能由所含信息量比核酸和蛋白质大几个数量级的糖链分子来承担。导致了,“,糖生物学,”,的诞生。,糖生物学的崛起,糖生物学,(,glycobiology,),在,1988,年被正式提出,,牛津大学,Dwek,教授在当年的,Annual Review of Biochemistry,中撰写了以,“,糖生物学,”,为题的综述,标志了糖生物学这一新的分支学科的诞生。同一年牛津大学研制成功了,N-,糖链的结构分析仪,,并实现了产品的商品化。,糖生物学,-,生命科学的前沿,1990,年,有,3,家实验室几乎同时发现,血管内皮细胞,-,白血球粘附分子,1(ELAM-1),,后来改名为,E-,选凝素,(E-selectin),,能识别白血球表面的四糖,Sia-Le,X,。当组织受到损伤时,白血球和内皮细胞粘附,沿壁滚动而穿过血管壁,进入受损组织杀灭入侵的异物。后来又发现了,P-,选凝素,和,L-,选凝素,,首次阐明了,炎症过程有糖类参与,。在肺癌和大肠癌细胞的表面也发现了,Sia-Le,X,,癌细胞可能借助类似的机制穿过血管而导致肿瘤的转移。掀起了开发和生产,抗炎和抗肿瘤药物,的热潮。以糖命名的药厂应运而生,美国,Scripps,研究所的华裔科学家王启辉首先应用,3,种不同的糖基转移酶,酶促合成了,Sia-Le,X,。,糖工程学,随着,“,糖生物学,”,基础研究的发展,用于糖生物学研究的,方法和基本技术,、以及把,基础研究所得的成果进一步转化为生产技术,等方面的研究也倍受重视,,“,糖工程学,”,的兴起也是极为自然的了。,政府对糖生物学研究的支持,I,1989,年,日本,创刊了,糖科学与糖工程动态,杂志,1991,年由科学技术厅、厚生省、农林水产省和通商产业省联合实施,“,糖工程前沿计划,”,,总投资,百亿日元,。该计划包括:糖工程、糖生物学、糖分子生物学、糖细胞生物学。编辑出版了专著,糖工程学,。,美,能源部,1986,年资助佐治亚大学创建了复合糖类,研究中心,,建立复合糖类,数据库,,,1990,年底已收集了,6000,个糖结构数据,,1992,年增加到,9200,个,,1992,年底有关的记录增加到,22000,份,,1996,年增加到,42000,份。,政府对糖生物学研究的支持,II,欧盟,1994-1998,年的研究计划中有一项,“,欧洲糖类研究开发网络,”,计划,强化欧洲在糖类基础研究以及将研究成果转化为商品方面与美国、日本的竞争能力。,糖类作为信息分子在,受精、发生、发育、分化,神经系统和免疫系统衡态的维持,等方面起着重要作用;,炎症和自身免疫疾病、老化、癌细胞的异常增殖和转移、病原体感染、植物和病原体相互作用、植物与根瘤菌共生等生理和病理过程,都有糖类的介导。,21,世纪生命科学的研究焦点是对,多细胞生物的高层次生命现象,的解释,因此,对生物体内细胞识别和调控过程的信息分子,糖类的研究是必不可缺的,各国都在加大投资以获得各自应有的地位。,糖类与遗传学,糖类是遗传学上非常重要的物质之一,过去人们并没有给予足够的评价。如,DNA,与,RNA,的区别,既不在碱基、也不在磷酸,,唯一的差别在核糖(,RNA,)和脱氧核糖(,DNA,)上,:,RNA,的核糖上位有羟基,,DNA,的糖上位无羟基。核糖的位羟基对于,RNA,来说,不仅是折叠成固有三维结构的关键因素,也是,RNA,具有催化作用的重要组成部分。,核糖位羟基是,DNA,和,RNA,在遗传学上的本质差别,由此可见糖类在遗传学上,扮演着核心和关键角色,。根据糖类在生命过程中所扮演的重要角色,,糖类应该有自己的遗传密码,。,糖类遗传密码,生命信息的准确传递是维持正常生命过程的基础,,而,三维结构的准确遗传、正常代谢和准确表达则是信息准确传递的物质结构基础,。作为,“,天才绝妙信息箱,”,的糖类,其物质结构基础是如何由双亲传给子代的?在后天的细胞新陈代谢中这种结构基础又是如何正常代谢和准确表达的?这个问题的答案就是,糖类遗传密码,(糖码)。与蛋白质遗传密码类似,,生物体内也可能存在糖类遗传密码,。虽然,当代大多数科学家都认为是糖基化酶编码了糖类,但是,也有一些人注意到了糖类本身的编码功能、对基因的反调控作用、糖类一维结构的多样性和三维结构的有限性等现象。,糖类遗传密码是什么?,生命进化过程:低等植物,高等植物(糖类为主体),低等动物,高等动物(蛋白质为主体)。,糖类与蛋白质
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 压缩资料 > 药学课件


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!