机电一体化控制系统设计技术

上传人:岁****好 文档编号:243135440 上传时间:2024-09-16 格式:PPT 页数:74 大小:852.50KB
返回 下载 相关 举报
机电一体化控制系统设计技术_第1页
第1页 / 共74页
机电一体化控制系统设计技术_第2页
第2页 / 共74页
机电一体化控制系统设计技术_第3页
第3页 / 共74页
点击查看更多>>
资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,9/16/2024,9/16/2024,第五章 机电一体化控制系统设计技术,知识点:,机电一体化控制系统概述,机电一体化系统数学模型,机电一体化控制系统响应,机电一体化系统的控制策略,微机控制装置的设计,机电一体化数字控制器的设计,本章导读,就控制理论的发展而言,大体可以分为三个发展阶段,即古典控制理论阶段、现代控制理论阶段和智能控制理论阶段。,古典控制理论是以传递函数为基础的一种控制理论,控制系统的分析与设计是建立在某种近似的或试探的基础上的。,现代控制理论是建立在状态空间上的一种分析方法,它的数学模型主要是状态方程,控制系统的分析与设计是比较精确的。,智能控制是近年来发展起来的一种控制理论,它包括最优控制、神经网络控制、模糊控制等。,5.1,控制系统概述,5.1.1,控制系统的组成及其特点,系统:是为了形成某种特殊功能而装配起来的一组物理元件。我们所研究的“系统”就是有相互联系、相互作用的若干部分构成,而且有一定的目的或一定的运动规律的一个整体。一般的机电系统是机械和电的组合系统。,控制:按照给定的目标,依靠调节能量输入,改变系统行为或性能的方法学。,控制系统:某些在物理上受可调节能量输入控制的一类系统。,5.1.2,控制系统的分类,一、按输入量的特征分类,恒值控制系统,程序控制系统,随动系统(伺服系统),二、按系统中传递信号的性质分类,连续控制系统,离散(数字)控制系统,三、按系统构成分类,开环系统,闭环系统,半闭环系统,四、按控制元件特性分类,线性控制系统,非线性控制系统,5.1.3,控制系统的几种实现方式,(,1,)系统分析问题:当系统已定、输入已知时,求出系统的输出,并通过输出来研究系统本身的有关问题。,(,2,)最优控制问题:当系统已定时,确定输入,且所确定的输入应使得输出尽可能符合给定的最佳要求。,(,3,)最优设计问题:当输入已知时,确定系统,且所确定的系统应使得输出尽可能符合给定的最佳要求。,(,4,)滤波与预测问题:当输出已知时,确定系统,以识别输入或输入中的有关信息。,(,5,)系统识别与系统辨识问题:当输入与输出均已知时,求出系统的结构与参数,即建立系统的数学模型。,5.1.4,控制系统的设计步骤,1,、目的分析。首先对系统的目的或任务进行定量分析,即将系统的目的、任务直接地或间接地变换成定量关系。,2,、系统分析。,(,1,)建立系统框图。将系统进行分解后,考虑到各个部分之间的输入、输出联系,即可利用框图方法来表达系统。,(,2,)建立系统数学模型。,3,、系统最佳化。,4,、系统仿真。,5.2,系统数学模型,控制系统的数学模型在控制系统的研究中有着相当重要的地位,要对系统进行仿真处理,首先应当知道系统的数学模型,然后才可以对系统进行模拟。,数学模型是描述元素之间、子系统之间、层次之间相互作用以及系统与环境相互作用的数学表达式。它是根据系统的动态特性,即通过决定系统特征的物理学定律,如机械、电气、热力、液压、气动等方面的基本定律而写成的。,5.2.1,输入输出模型,对于输入输出的数学模型,常用微分方程来描述该系统在时域中的动态特性。列写微分方程的目的在于确定系统的输出量与给定输入量或扰动输入量之间的函数关系,而系统是由各种元件组成的,因此列写方程的一般步骤如下:,(,1,)确定系统或各元件的输入量、输出量。,(,2,)按照信号的传递顺序,写出在运动过程中的各个环节的动态微分方程。,(,3,)消除所列各微分方程的中间变量。,(,4,)整理所得微分方程。,例,5-1,如,图所示为一具有质量、弹簧、阻尼器的机械位移系统。试列写质量在外力作用下,位移的运动方程。,由弹簧、质量块和阻尼器组成的机械位移系统,阻尼器的粘性摩擦力(与速度成正比):,:阻尼器粘性摩擦系数,弹簧力:,外力 与位移 的运动方程:,二阶线性常系数微分方程,5.2.2,状态模型,一、状态模型的基本概念。,状态:表征系统运动的信息和行为;,状态变量:完全表征系统运动状态的最小个数的一组变量;,状态向量:描述系统状态的,n,个状态变量组成的,n,维状态向量;,状态空间:以,n,个状态变量作为坐标轴所组成的,n,维空间;,状态轨线:系统状态向量在状态空间中随时间变化的轨迹;,状态方程:描述系统状态变量与输入变量之间关系的一阶微分方程组或一阶差分方程组;,输出方程:描述系统输出变量与系统状态变量和输入变量之间关系的代数方程;,状态空间表达式:状态方程与输出方程的组合。,二、状态空间表达式,通常受控系统的状态空间表达式可表示为下列紧凑的形式:,式中:,线性时变系统的状态空间表达式 线性系统状态空间表达式的一般形式为:,线性定常系统的状态空间表达式:当线性系统的参数恒定时,可得线性定常系统的状态空间表达式为:,A,称为系统的状态矩阵;,B,称为控制矩阵,(,或输入矩阵,),;,C,称为输出矩阵;,D,称为前馈矩阵。,由以上分析可知,状态空间表达式具有以下特点:,(1),状态空间表达式是一种对系统的完全描述,其核心是状态方程;,(2),系统的状态空间表达式不是惟一的;,(3),不同形式状态空间表达式可相互转化。,5.2.3,传递函数,建立系统数学模型的目的是为了对系统的性能进行分析。在给定外作用及初始条件下,求解微分方程就可以得到系统的输出响应。这种方法比较直观,特别是借助于电子计算机可以迅速而准确地求得结果。但是,若系统中某个参数变化或结构形式发生改变,需要重新列写并求解微分方程。不便于对系统进行分析和设计。,运用拉氏变换求解系统的线性常微分方程,即可得到系统在复数域的数学模型,称之为传递函数。传递函数不仅可以,表征系统的动态特性,,而且可以用它来研究,系统的结构或参数变化对系统性能的影响,。在经典控制理论中广泛应用的,频率法,和,根轨迹法,,就是在传递函数基础上建立起来的。因此,传递函数是经典控制理论中最基本也是最重要的概念。,一、传递函数的定义和性质,定义,:如果将输入,u,及输出,y,用其拉普拉斯变换形式,U,(,s,)、,Y,(,s,)来表示,那么,,Y,(,s,)与,U,(,s,)的比称为传递函数 。,拉氏变换,:,时域:,f(t,),(称为:原函数),复频域:,F(s,),(称为:象函数),(复频率),1,、设线性定常系统由下述阶线性常微分方程描述:,由定义得系统传递函数为:,2,、性质 传递函数具有以下性质:,传递函数是复变量的有理真分式函数,具有复变函数的所有性质。,传递函数是系统或元件数学模型的另一种形式,是一种用系统参数表示输出量与输入量之间关系的表达式。,传递函数与微分方程有相通性。,传递函数的拉氏反变换是脉冲响应,g(t,),。,例,5-3,如,图所示网络的微分方程为,二、典型环节的传递函数,一个物理系统是有许多元件组合而成的。虽然各种元件的具体结构和作用原理是多种多样的,但若抛开其具体结构和物理特点,研究其运动规律和数学模型的共性,就可以划分成为数不多的几种典型环节。,这些典型环节是:比例环节、微分环节、积分环节、比例微分环节、一阶惯性环节、二阶振荡环节和延迟环节。,1,、比例环节,比例环节又称放大环节,其输出量与输入量之间的关系为一种固定的比例关系。这就是说,它的输出量能够无失真、无滞后地按一定的比例复现输入量。比例环节的表达式为,比例环节的传递函数为,2,、微分环节,微分环节是自动控制系统中经常应用的环节。微分环节的特点是在暂态过程中,输出量为输入量的微分,即,其传递函数为,3,、积分环节,积分环节的动态方程为,对应的传递函数为,4,、一阶惯性环节,自动控制系统中经常包含有这种环节,这种环节具有一个储能元件。一阶惯性环节的微分方程为,其传递函数,5,、二阶振荡环节,二阶振荡环节的微分方程为,其传递函数为,6,、延迟环节,延迟环节的特点是,其输出信号比输入信号迟后一定的时间。其数学表达式为,延迟环节的传递函数为,5.2.4,传递函数与状态方程的转换,一、由状态空间模型转换为传递函数,(,阵,),由状态空间表达式惟一地导出系统的传递函数,(,阵,),。,最小多项式,(s,),的根与特征多项式,det(sI,-A),的根相同,差别的只是根的重数不同而已。由同一系统的不同状态空间表达式可以导出相同的传递函数,(,阵,),二、传递函数转换为状态空间模型,由传递函数,(,阵,),转换为状态空间表达式的实质,就是要寻找一个在外部特性上等价的状态空间表达式,(A,,,B,,,C,,,D),,使其满足:,并称状态空间表达式,(A,,,B,,,C,,,D),为该传递函数,(,阵,),G(s,),的一个实现。线性定常系统传递函数的一般表达式为:,应用传递函数直接分解法求状态空间表达式的一般步骤:,将传递函数写出,s,的负幂项的因果关系式;,根据因果关系式绘制系统的状态变量图;,由状态变量图直接列写系统的状态空间表达式。,5.2.5,方框图,一、方框图单元,任何系统都可以由信号线、函数方框、信号引出点及求和点组成的方框图来表示,如图所示。,二、方框图的联结,系统中各环节的方框图之间的联结可归纳为以下几种:,(1),串联,几个环节串联,总的传递函数等于每个环节的传递函数的乘积。,(2),并联,同向环节并联的传递函数等于所有并联的环节传递函数之和,(,3,)反馈联结,反馈量与输入量相减称为负反馈;反馈量与输入量相加称为正反馈,三、方框图简化,5.3,系统响应,5.3.1,时间响应,时域分析法是一种直接分析法,具有直观和准确的优点,尤其适用于一、二阶系统性能的分析和计算。对二阶以上的高阶系统则须采用频率分析法和根轨迹法。,一、典型输入信号,自动控制系统常用的典型输入信号有下面几种形式:,1,、阶跃函数 定义为,2,、斜坡函数 定义为,3,、抛物线函数 定义为,4,、单位脉冲函数,(t,),定义为,二、一阶系统的时间分析,凡是可用一阶微分方程描述的系统称一阶系统。一阶系统的传递函数为:,(1),单位阶跃响应,当输入信号,u(t,)=1(t),时,,U(s,)=1/s,,系统输出量的拉氏变换为:,对上式取拉氏反变换,得单位阶跃响应为:,一阶系统的阶跃响应曲线,2),单位斜坡响应,当输入信号,u(t,)=t,时,,U(s,)=1/s,2,,系统输出量的拉氏变换为:,对上式取拉氏反变换,得单位,斜坡,响应为:,三、二阶系统的时间响应,凡是可用二阶微分方程描写的系统称为二阶系统。在工程实践中,二阶系统不乏其例,具有较大的实际意义。,典型二阶系统的单位阶跃响应:,5.3.2,频率响应,一、频率响应和频率特性,频率响应,线性定常系统对谐波输入的稳态响应称为频率响应。,频率特性,在正弦信号作用下,系统输入量的频率由,0,变化到,时,稳态输出量与输入量的振幅和相位差的变化规律。,二、频率特性的几何图像,工程上用频率法研究控制系统时,主要采用图解法。图解法可方便、迅速地获得问题的近似解。每一种图解法都是基于某一形式的坐标图表示法。,频率特性,G(j,),的图示法,(,奈奎斯特图,),(,a,),G(j,),的极坐标图示法;(,b,),G(j,),的直角坐标图示法,对数频率特性图,(,伯德图,),(,a,)对数幅频特性;(,b,)对数相频特性,5.3.3,性能指标,一、时域性能指标,时域中评价系统的暂态性能,通常以系统对单位阶跃输入信号的暂态响应为依据,规定如下指标:,(,1,)延迟时间,t,d,(,2,)上升时间,t,r,(,3,)峰值时间,t,p,(,4,)调节时间,t,s,(,5,)最大超调量,(,6,)稳态误差,e,ss,二、频域性能指标,(,1,)相位裕度,(,2,)幅值裕度,K,g,(,3,)复现频率,m,(,4,)复现带宽,0,m,(,5,)谐振频率,r,(,6,)截至频率,b,5.4,系统的控制策略,5.4.1,传统控制策略,传统的控制策略主要有:,PID,控制、,Smith,控制和解耦控制三种。,一、,PID,(比例,积分,微分)控制,为了改进反馈控制系统的性能,人们经常选择各种各样的校正装置,其中最简单最通用的是比例,积分,微分校正装置,简称为,PID,校正装置或,PID,控制器。这里,P,代表比例,,I,代表积分,,D,代表微分。,二、,Smith,控制,Smith,预估控制系统等效图,三、解耦控制,工业应用中的许多系统都是多变量系统,其中个变量间存在耦合关联作用。在复杂的生产设备中,往往需要设置若干个控制回路来稳定各个被控制变量。在许多情况下,这几个控制回路间存在着相互关联,相互耦合,形成变量多输入、多输出的相关控制系统。,5.4.2,现代控制策略,在,60,年代末以前,主要采用,PID,控制策略,尽管其算法简单,鲁棒性能较好,但它具有时变、大时滞、非线形等特性的过程时,就显得力不从心。,基于状态空间模型的现代控制理论尽管发展很快,在空间技术和军事工程上获得了成功的应用,但面对如此复杂并难于建模的工业过程,依然存在着很大的局限性。,自,20,世纪,70,年代以来陆续出现了自适应控制、预测控制、鲁棒控制、智能控制、非线性控制等控制策略,力图比较好的解决因工业生产过程的复杂性所带来的困难。,一、自适应控制,(1),模型参考自适应控制系统,模型参考自适应控制系统框图如图所示。,模型参考自适应控制系统的结构图,(2),系统辨识与最优控制结合的自适应系统,这类自适应控制系统的框图如图所示。它一般由系统辨识、被控对象、最优计算和调节器几部分组成。,具有在线辨识的自适应控制系统,二、预测控制,预测控制,也称为基于模型的控制,最典型的算法为,DMC,、,MAC,、,GPC,等。预测控制的三个基本特征是预测模型、滚动优化、反馈校正。,三、鲁棒控制,控制系统的鲁棒性研究是现代控制理论研究中一个非常活跃的领域,鲁棒控制问题最早出现在上个世纪人们对于微分方程的研究中。,5.4.3,智能控制策略,智能控制是自动控制发展的高级阶段,是人工智能、控制论、系统论和信息论等多种学科的高度综合与集成,是一门新的交叉前沿学科。从广义上讲,智能控制是研究对复杂的不确定性被控对象(过程)采用人工智能的方法有效地克服系统的不确定性,使系统从无序到期望的有序状态转移的方法及其规律。,一智能控制系统具有以下特点:,(1),同时具有以知识表示的非数学广义模型和以数学模型表示的混合制过程;,(2),智能控制的核心在高层控制,即组织级;,(3),智能控制器具有非线性特性;,(4),智能控制具有变结构特点;,(5),智能控制器具有总体自寻优特性;,(6),智能控制系统应能满足多样性目标的高性能要求;,(7),智能控制是一门边缘交叉学科;,(8),智能控制是一个新兴的研究领域。,二、智能控制的结构理论:,智能控制的理论结构明显地具有多学科交叉的特点,许多研究人员试图建立起智能控制这一新学科,他们提出了一些有关智能控制系统结构的思想。,智能控制三元结构,三、智能控制系统的分类:,智能控制实际只是研究与模拟人类智能活动及其控制与信息传递过程的规律,研制具有仿人智能的工程控制与信息处理系统的一个新兴分支学科。智能控制系统一般包括:专家控制系统 、神经控制系统、模糊控制系统 、学习控制系统 。,5.4.4,控制策略的相互渗透和结合,从上述各种控制策略的分析可以看出,每种控制策略都有其特长,但都在某方面有某些问题。因此,一种必然的发展趋势是各种控制策略相互渗透,取长补短,互济优势结合成符合的控制策略。,复合控制策略的类型:,模糊,PID,复合控制,自适应模糊控制,模糊神经网络控制,模糊预测控制,5.5.1,控制装置及微机的选择,微型计算机控制系统设计原则:可靠性高、操作性好、实施性强、通用性好、经济效益高。硬件软件功能分配与协调。大量使用硬件会增加成本,影响系统可靠性;增加软件,系统速度相应降低 。所以,微机控制应用系统应是一个工业测、控系统,一个模拟,数字系统,一个物理结构灵活的系统。,5.5,微机控制装置的设计,一、微处理机在控制系统中的作用是:,(,1,)接受上位机的指令;,(,2,)采集传感器的反馈信号;,(,3,)运算控制规律;,(,4,)生成并输出控制信号。,所选计算机应满足以下要求:,(,1,)完善的中断系统,(,2,)足够的存储容量,(,3,)完备的,I/O,通道和实时时钟。,二、接口以及信息输入,/,输出设备设计。,微机控制系统中的计算机与外设(如传感器、执行器、动力源、机械本体、与人的信息交换设备等)之间的连接和信息交换是通过接口来实现的。在此将计算机与外设连接的接口称作输入,/,输出(,I/O,)接口。,三、传输总线与标准接口。,输入和输出通路的主要功能是实现模拟量与数字量之间的信号变换。控制装置的通道包括:系统,I/O,通道、 数字量,I/O,通道、开关量,I/O,通道、模拟量,I/O,通道、脉冲量,I/O,通道。在总体设计中,应确定本系统应设置什么样的通道、每个通道由几部分组成,各部分选用什么器件等。,四、操作员控制台设计。,对于控制台的设计,应保证作者观察显示器和操作控制器方便舒适,为操作者长时间操作提供舒适稳定的坐姿。,人在控制台前常用的作业姿势有三种:坐姿、坐,/,立姿和立姿。从减轻人的疲劳角度看,坐姿比坐姿,/,立姿的好,坐,/,立姿比立姿好。显示器和控制器按人体尺度来放置。,5.5.2,提高系统控制装置的可靠性,可靠性是产品在规定条件下和规定时间内,完成规定功能的能力。这里的“产品”是作为单独研究和分别试验对象的任何元件、设备或系统,可以是零件、部件,也可以是由它们装配而成的机器,或由许多机器组成的机组和成套设备,甚至还把人的作用也包括在内。,规定的时间是使可靠性区别于产品其他质量属性的重要特征,一般也可认为可靠性是产品功能在时间上的稳定程度。,5.6.1PID,数字控制器,PID,控制在经典控制理论中技术成熟,自,20,世纪,30,年代末出现的模拟式,PID,调节器,至今仍在广泛地应用着。今天,随着计算机技术的迅速发展,用技术算法代替模拟式,PID,调节器,实现数字,PID,控制,使其控制作用更灵活、更易于改进和完善。,5.6,数字控制器的设计,PID,程序的实现,1,、操作特征的设置:每个回路手动,/,自动特征位;每个执行机构设置正向,/,反向特征位,2,、执行机构极限保护。在编写控制执行机构运动的程序时应计算,Pn(n)-U(n,),,检查输出余量,这样做主要是为了防止执行机构过开或过关。,3,、防止极限环。可一采用对计算机输出规定一个不灵敏区,,如果,|,Pn(n,)|,则计算机不输出来解决此问题。,5.6.2,史密斯数字控制器,史密斯数字控制器的设计,仍是先设计模拟控制器,然后离散化求得数字控制器。,Smith,控制系统框图,Simith,控制器系统框图,离散化方案,5.6.3,最少拍无差系统的设计,在数字随动控制系统中,要求系统的输出值尽快地跟踪给定值的变化,最少拍控制就是为满足这一要求的一种离散化设计方法。所谓最少拍无差系统是指在典型的控制输入信号作用下能在最少几个采样周期内达到稳定无静差的系统。,一、给定输入函数的,Z,变换,典型控制输入 时间序列 脉冲传递函数,单位阶跃输入:,单位速度输入:,单位加速度输入:,通式:,二、典型输入下最少拍系统的设计方法,假设被控对象的脉冲传递函数,G(z,),是稳定的,它在单位圆上和单位圆外没有零点、极点,并且没有纯滞后。,若:,控制技术发展到今天,其理论水平已达到相当的高度。而如何将这些理论(或者说是控制思想)实际应用才是作为大多数工程技术人员目前需要考虑的问题。在机械电子系统中,是以微处理器作为其控制器的,微处理器具有存储记忆功能和极强的信息处理能力,它与检测传感器装置相结合,能根据给定的指令和系统的实际运行状态去控制执行机构完成预定的工作。,本章小结,思考练习,1,、控制理论发展分为哪三个阶段?,2,、什么叫控制系统?,3,、开环控制系统和闭环控制系统各有什么优缺点?,4,、控制系统的设计步骤是什么?,5,、什么是系统的数学模型?,
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 临时分类 > 职业技能


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!