第六部分_随钻测量技术

上传人:a**** 文档编号:243052410 上传时间:2024-09-14 格式:PPT 页数:83 大小:6.53MB
返回 下载 相关 举报
第六部分_随钻测量技术_第1页
第1页 / 共83页
第六部分_随钻测量技术_第2页
第2页 / 共83页
第六部分_随钻测量技术_第3页
第3页 / 共83页
点击查看更多>>
资源描述
,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二层,第三层,第四层,第五层,*,*,李琪主讲,第六部分随钻测量技术,随钻测量与地质导向工具,是一项钻井技术的“地下革命”,9/14/2024,1,盐丘,定向钻井技术在勘探、开发中的功用,海上或陆地丛式井,工程救险井,因事故复杂进行侧钻,多目标勘探与开发,控制断层钻探,水平井进行开发,地面条件限制,大位移定向井,侧钻分支井,9/14/2024,2,6.1 随钻测量信息系统概述,9/14/2024,3,随钻测,量系统,MWD,EM,MWD,FM,MWD,实时动态数据测量储存系统,井下动态信,息测储设备,近钻头测,量系统,LWD,空间姿态 测量系统,钻头前方,探测系统,SWD,地面监测,录井系统,综合录井仪 八参数仪地 面 模 拟 器,地面与井下数据储存、分析与显示系统,地面或远方决,策与总控系统,微电脑一,微电脑二,微电脑三,(,上行测量信息通道,),6.1.1 随钻信息测量-控制,-通讯流程图,(,下行测量信息通道,),地面控制设备,环空/钻柱,井下控制机构,井下执行机构,钻头/工具,9/14/2024,4,MWD measure while drilling,EM.MWD ,eleetronic,measure MWD,FE.MWD ,formtion,Evaluation MWD,DWD Diagnostic-While-Drilling,LWDlogging while drilling,SWDseismic while drilling,GST,Geosteering,Tool,6.1.2 随钻测量系统发展,9/14/2024,5,井斜、方位、工具面、井下钻压、井下扭矩、马达转速,井下振动、伽马射线、地层电阻率、密度,方位中子密度、中子孔隙度、环室温度,探测各种异常地层压力、预测钻头磨损状况,探测井下异常情况及故障分析,通过井下存储可实现测井的全井图像分析,6.1.3 随钻测量参数,9/14/2024,6,泥浆脉冲传输方法,涡轮发电机给系统供电,接收系统、接收各部分传感器采集的数据,连续脉冲波发生器,由转子和定子组成,转子与定子之间切割泥浆产生不同的泥浆压力差。,利用钻杆传播应力波(声波)方法,Burne,和,Kirkwood(1972),、,Drumheller(1989),奠定了理论基础;,Lee,和,Ramarao(1995),分析了充液钻杆中声波传输问题;,哈里伯顿(,2000,)开发了声波遥传系统,AST,(,Acoustic Telemetry System,),最有潜力的高速传输方式,电磁波(,EM,)遥传系统载波频率一般在,30Hz,以下,泥浆脉冲遥传系统载波频率一般在,100Hz,以下,声波遥传系统(,ATS,)载波频段在,400,2000Hz,6.1.4 随钻测量数据传输系统,9/14/2024,7,9/14/2024,8,6.2 MWD 随钻测量系统,9/14/2024,9,井下传感器组装工具,9/14/2024,10,A/D转换板,温度校正,换算,标定,钻压校正,加速度X,Y,Z,钻压,钻头扭矩,环空压力,井眼压力,温 度,磁力仪X、Y,1000赫兹,16位,为研究用的仪表面板储存器,1000赫兹,16位,1000赫兹,16位,0.2赫兹,0.2赫兹,0.2赫兹,格式变换,数字低频滤波,付立叶变换处理,集成平均值,计算转换,诊断处理,记录速度,200,100,40赫,钻压,扭矩,弯矩,转速,环定压力,井眼压力,加速度,静态矩,(平方根、立方根),温度,1 跳钻,2 粘/滑,3 涡动、反转,4 扭振,5 轴向加速度,6 横向加速度,7 弯矩,8 钻头切削效率,传输,到地面,赫兹,诊断标志,静态的,数据检测,数字信号处理,数据监测和处理框图,9/14/2024,11,System for Diagnostic-While-Drilling(DWD),Sandia National Laboratories,Measurement Sub:,Three-axis acceleration,High-frequency axial acceleration,Angular acceleration,Magnetometer (rotary speed),Weight on bit, torque on bit, bending moment,Drill pipe and annulus pressure,Drill pipe and annulus temperature,9/14/2024,12,System for Diagnostic-While-Drilling(DWD),Sandia National Laboratories,Data-transmission format,A stream of digital, bi-phase encoded frames,Data link,Digital data rate = 200,000 bits per second,A commercially available data link called Wet-connect wireline is chosed,Surface display,9/14/2024,13,6.3.1 与电缆测井的比较,使测井在地层被破坏或被污染之前完成,部分信息能实时测量,可使钻井过程更有效,使测井更安全保险(某些井环境恶劣、下电缆困难),避免了仪器落入井中又无法回收等事故,几乎能完成所有电缆测井工作,且有相同的测量精度,成本高、尺寸大,海上钻井作业中,使用,LWD,的,比例高达,95%,每年随钻测井服务产值已占整个测井行业产值的,25,6.3 LWD 随钻测井系统,9/14/2024,14,CDN补偿中子密度,CDR补偿双电阻率,6.3.2 系统组成及性能,9/14/2024,15,指 向 性,9/14/2024,16,9/14/2024,17,(1)补偿双电阻率 CDR(Compensated Dual Resistivity),6.3.3 随钻测井工具,高频感应能在各种泥浆中工作,补偿井眼的影响,伽马射线能谱分析,探测两种深度:(中深,RPS,(,?,),是相位测量,深,RAD,(,放射的),是通过衰感测量,使用目的是对比所钻地层,对地层进行评估),9/14/2024,18,Integrated Drilling Evaluation and Logging (IDEAL), ARC5 Array Resistivity Compensated,The ARC5 Array Resistivity Compensated tool provides 2-MHz borehole-compensated phase and attenuation(,衰减,) resistivity measurements with multiple depths of investigation in slimholes.,Benefits of the ARC5 tool,Formation evaluation measurements while drilling in,slimholes,.,Accurate,Rt,up to 200 ohm-m with wide range of borehole fluids.,Invasion profiling to identify permeable zones.,High-quality real-time measurements available for correlation and,geosteering,.,9/14/2024,19,Integrated Drilling Evaluation and Logging (IDEAL), ARC5 Array Resistivity Compensated,Features of the ARC5 tool,Five transmitters and two receivers combine to give 10 vertically matched, borehole-compensated, 2-MHz,resistivities,.,Total gamma ray sensor for,lithology,estimation and correlation.,Downhole,memory and batteries allow tool to be run while drilling or while tripping.,Real-time data transmission with Slim 1* MWD system,Data processing provides horizontal and vertical,resistivities,(,R,h,R,v,), mud,resistivity,(,R,m,), phase caliper,(,井径仪,),and invasion profile.,9/14/2024,20,由两个中子源、一个中子探测器、一个密度探测器、一个扶正器和电子线路构成。,使用两个探测器的目的是补偿井眼的影响,补偿热中子密度,补偿岩石的密度,(2)补偿中子密度CDN(Compensated Density Neutron),6.3.3 随钻测井工具,9/14/2024,21,由中子源、中子探测器、密度源、密度探测器和超声探测器等构成,世界首创方位核子测井工具,方位核子测量能认识非均匀性地层,并在不规则井眼中很好应用,与电缆测量的密度和孔隙度的精度相同,可用超声进行偏离间隙测量,可允许大泥浆排量,放射源易于安装打捞,6.3.3 随钻测井工具,(3)方位中子密度ADN(Azimuthal Density Noutron),9/14/2024,22,Integrated Drilling Evaluation and Logging(IDEAL),AND Azimuthal Density Neutron,是提供方位核子测量的第一个随钻测井工具;,AND tool measures borehole-compensated formation density, neutron porosity, photoelectric factor,(,光电因子,),and ultrasonic standoffs,(,间隙,),.,These are individually measured in four quadrants,(,象限,),around the borehole - top, bottom, left and right - along with average measurements around the borehole.,Quadrant readings allow detection of bed boundaries and heterogeneous formations.,9/14/2024,23,由打捞柱、电池、上发射器、方位电极、电极环、方位伽马射线、钻头电阻率探测器和现场可换扶正器构成,可定向地测量钻头处的方位电阻率,可对地层倾角和井眼间隙补偿,采用近钻头测量的原因,实现地层对比,实现地层评价,保证测井数据更能真实反映地层情况,得到比电缆测井效果更好的测井数据,6.3.3 随钻测井工具,(4)近钻头电阻率RAB(Resistivity At Bit),9/14/2024,24,Integrated Drilling Evaluation and Logging(IDEAL),RAB Resistivity-at-the-Bit,方位电极,应用:,地层评价(,Formation evaluation,),-,盐水泥浆或高电阻率地层可精确测量电阻率,- High vertical resolution,(,分辨率,),(几英寸),-,方位电阻率井眼成像探测电阻率各向异性,- Sensor at bit to ensure minimum possible invasion,- Total gamma ray sensor for,lithology,estimation,- Battery power and,downhole,memory to log while tripping,9/14/2024,25,应用,相关性(,Correlation,),-,Resistivity,at the bit for instantaneous detection of casing and coring points,using the bit as the measurement electrode,钻井,/,机械(,Drilling/mechanical,),- The RAB tool can be run either slick or with a sleeve stabilizer,- Built into a short, independent sub for minimal interference with HBA design,- Shock measurement to allow the driller to adjust weight on bit and rate of turn to extend BHA and drill bit life,Integrated Drilling Evaluation and Logging(IDEAL),RAB Resistivity-at-the-Bit,9/14/2024,26,Integrated Drilling Evaluation and Logging(IDEAL),ISONIC Tool (90年代),在钻头上12米处的钻铤内装置发射和阵列接收探头,钻进时发射探头产生声脉冲,声波通过泥浆和地层传播到达4接受探头阵列,ISONIC 工具获得声波波形(acoustic waveform)记录在井下存储器中,传输时间(transit time)(地层时差)实时发送到地面,用于确定地层孔隙性(porosity)、评价岩性、估测孔隙压力、并作为(synthetic seismograms)的输入值;,实时钻井和测井数据可与3维地震数据一起放在计算机工作站上,声波数据可以来将钻头位置标示在地震图上。,(5)随钻声波测井(Isonic Tool),9/14/2024,27,(5)随钻声波测井(Isonic Tool),斯伦贝谢最新推出:随钻声波测井仪sonicVISION,随钻地震波测井仪seismicVISION,贝克休斯INTEQ公司:声波参数随钻测量系统,APX(Acoustic Properties eXplorer),,能以单极子、偶极子、四极子模式获取声波资料。,Sperry Sun公司:双模式声波仪器(BAT),,适用于在大井眼(14-3/426in )中获取声波速资料,,能提供孔隙压力资料。,9/14/2024,28,IDEAL,地质导向工具(斯伦贝谢Anadrill公司)Integrated Drilling Evaluation and Logging,关键:定向和测井传感器接近钻头(12m)通过无线传输系统(电磁波)把数据从钻头处传到MWD系统。,可以更好地指导钻井井眼穿过薄层和复杂地区,利用测井数据直接进行地质导向钻井。,能更准确地预测井眼轨迹,在两点测量井斜角,其一是近钻头处,其二是保留原MWD处的井斜角测量。,6.3.4 地质导向 GST(Geosteering tool),9/14/2024,29,Integrated Drilling Evaluation and Logging(IDEAL),GeoSteering Tool,由,Power Pak,导向马达,、,测量短节、无线遥感测量系统组成;,在地面实时地质导向显示屏上将钻头处实时测得的油藏信息与油藏模拟模型对比,可确定钻头在油藏中的位置。,9/14/2024,30,Integrated Drilling Evaluation and Logging(IDEAL),GeoSteering Tool,地质导向的特性:,电阻率和咖码测井可确定被钻岩层的流体和岩石性质;,方位电阻率提示司钻钻遇新的地层(,approaching formation boundaries and contacts),,,以便确定最佳工具面角;,Bit speed enables the driller to optimize the power curve of the motor and improve penetration rate,;,Inclination at the bit enables the directional driller to drill straight ahead, reducing well,tortuosity,and extending the potential,dispalce-ment,of the well bore.,9/14/2024,31,FMIfullbore formation microimager logs,几种测井结果吻合,9/14/2024,32,9/14/2024,33,9/14/2024,34,6.4 (Seismic While Drilling)随钻地震技术,随钻地震的基本原理示意图,9/14/2024,35,预测钻头前方地层信息,9/14/2024,36,9/14/2024,37,从SWD、LWD、SL,T(声波时差)以及测井、地质钻井资料获取随钻速度信息,9/14/2024,38,还有钻机波、首波、钻杆多次波、钻具组合多次波等次生波;这些次生波都有各自的传播路径和传播规律;可以用时距方程来表示,也可以用计算机正演模拟它们的时距曲线表示。,钻 头 震 源,钻头的冲击力产生纵波(P波),它沿着井轴方向传播,偏离井轴方向能量减小;同时产生横波分量(SV波),它沿着井底平面径向(垂直井轴方向)传播,偏离井底平面能量减小。,钻头的旋转力产生横波水平分量(SH波),它沿着井底平面径向传播,其质点方向与SV波的质点方向垂直。,9/14/2024,39,随钻地震数据采集、处理及应用示意图,9/14/2024,40,随钻地震的资料处理,(1)相关处理:相关技术是一门边缘学科,以信息论和随机过程理论作为基础。将参考信号与地面每个检波器记录的信号作互相关,使得连续的钻头信号压缩成脉冲信号,每个尖脉冲代表着一种特殊地震波(直达波、反射波、干扰波)。从脉冲对应的时间可测出钻头信号经不同路径到达各接收器所需的旅行时间。互相关过程加强钻头信号的能量,特别对来自钻头下方的反射信号作用更明显。,(2)反褶积:为了有效的检测和记录钻头信号,需在钻杆顶端设置参考检测器,但该检测器接收的信号存在钻柱谐振效应或路径传播效应,致使频谱畸变和存在高速多次波干扰;为消除钻柱谐振效应,可假设钻头信号为白噪信号,且钻柱脉冲响应为最小相位,由参考信号自相关的单边倒数作为反褶积因子,对互相关输出进行反褶积,即可消除互相关输出中参考信号的高速多次波和频谱畸变。,9/14/2024,41,随钻地震资料处理流程,9/14/2024,42,随钻地震的应用,(1)利用随钻地震研究井孔附近的地层构造细节,实时得到的速度资料,对地震剖面进行重新处理;,预测地层孔隙异常压力;,对声波测井资料进行校正,实现测井与速度的一致性;,利用时深关系数据,确定所钻深度在地震剖面上的精确位置;,预测钻头前方的待钻地层(包括岩性、地层压力等);,确定井旁小断层,解释地层不整合面是否存在,求地层界面的倾角。,综合利用直井和斜井资料可以查明井孔附近的地层构造细节。,9/14/2024,43,(2)地层参数的综合研究,参考信号能量的大小与所钻地层的硬度有关,地层越硬,能量越强。,从地震波的传播时间、方向、频率、波形、极性、偏振等信息可获得地层纵波和横波的传播速度、泊松比、能量衰减等,估算岩石类型、岩石孔隙度、孔隙压力和其它声学敏感的岩性参数。,有了钻头处的地层参数,结合反射波的信息,运用资料处理中的反演技术或建模技术预测钻头下方各深度点的波阻抗参数,并估算钻头下方岩石类型、岩石孔隙度、孔隙压力和其它声学敏感的岩性参数。,随着钻头的钻进,结合钻井参数及录井、地质、测井等资料,未知地层的参数逐步变为已知。再与外推钻头下方的待钻地层参数进行比较和修正,再进行外推。不断重复进行。使钻前外推的地层参数逐步逼近真实值。,随钻地震的应用,9/14/2024,44,随钻地震的应用,(3)利用随钻地震测定实时井深、钻头位置和井身轨迹曲线,*随钻地震获取的信息是油藏未被污染的原始参数。,二维剖面上钻头位置的确定,9/14/2024,45,9/14/2024,46,9/14/2024,47,9/14/2024,48,9/14/2024,49,9/14/2024,50,9/14/2024,51,VSP - Checkshot,(,校验炮),While Drilling,9/14/2024,52,有线随钻测量,9/14/2024,53,9/14/2024,54,elastomer face-seal connection pin end,9/14/2024,55,elastomer face-seal connection box end,9/14/2024,56,tool joint make up with the 3 conductors,clearly visible at each end,9/14/2024,57,annulor conductor configuration in tool joint and mid-body,9/14/2024,58,connector assembly with integral by-pass,to protect electrical contacts,9/14/2024,59,用电子钻柱进行智能钻井, 降低钻井成本应用井下牵引器(traction)或推进器(thruster)来控制钻压以优化钻进过程,并保持钻头转速独立于(不依赖)排量来降低钻井成本。, 减轻井眼稳定性(失稳)问题由于既可通过反循环减低了ECD以及又可从分布安放在全井长度范围的传感器(复数)来掌握(全井各段)压力情况,而能减轻井眼失稳问题。, 减少成本使用实时LWD系统来代替电缆测井而减少成本。, 在大位移井中减少卡钻由沿钻柱布置的牵引工具来减少钻柱粘卡问题。, 提高油井产能从改善地质导向入手,取道于瞬时数据反馈,借助于这种高质量的遥传(信息)通道。, 利用井下震源和接收器的随钻地震(SWD)的改进。, 新型传感器的潜在进展能从有用的井下剩余功率得到好处。,9/14/2024,60,(1)Profile Salt Face,6.6 随钻测量(LWD)应用,9/14/2024,61,(2)Delineate Lateral Facies & Rock Property Variations,Good,f,& k,Lower,f,& k,Delineate - 描绘,9/14/2024,62,(3)Optimize Geosteering Relative to Cap Rock,OWC,Horizontal Well,9/14/2024,63,(4)Look Ahead/Below Sheet Anhydrite or Salt,GWC,Salt or anhydrite,9/14/2024,64,(5)Find & Geosteer into Porous Carbonate Layers Embedded in Salt,9/14/2024,65,(6)Optimize Well Position in Oil Rim,OWC,GOC,9/14/2024,66,(7)Maximize Sand Penetration in Channelized Reservoir,9/14/2024,67,(8)Find & Geosteer into Fractured Zones,9/14/2024,68,(9)Identify & Delineate Compartments,9/14/2024,69,Geopressured Sand,(10)Detect Geopressures Ahead of the Bit,9/14/2024,70,(11)Detect Fluid Contacts Remote from Well,GOC,OWC,9/14/2024,71,(12)Optimize In-fill Well Placement to Avoid Water Influx via Fractured Faults,OWC,9/14/2024,72,(13) Optimize In-fill Well Placement to Avoid Water Influx via Permeable Zones,Higher k,9/14/2024,73,(14) Locate Remaining Oil Away from Watered Out Wells,POWC,POWC,9/14/2024,74,(15) Locate Remaining Oil in a Layered Reservoir,POWC,POWC,Horizontal Well,Original OWC,9/14/2024,75,(16) Locate OWCs in Proximal Stacked Oil Bearing Sands,POWC,Original OWC,Horizontal Well,9/14/2024,76,(17) Monitor beyond a Vertical Production Cone (Water or Gas),Original OWC,Current OWC,9/14/2024,77,(18) Monitor Water (Gas) Encroachment & Sweep Efficiency from Horizontal Producer,Original OWC,Current OWC,Horizontal Well,9/14/2024,78,(19) Identify Bed Boundaries & Faults Ahead of the Bit,9/14/2024,79,6.7 Well Logging Trends,Conveyance independent data,FE technology from,wireline,to MWD/LWD,Cased hole evaluation to supplement MWD/LWD,Integration of MWD/LWD and,wireline,data,More targeted and guided wells,Better geosteering,Location of,wellbore,relative to reservoir fluids,Less intervention,(,干预),Permanent sensing / smart wells,9/14/2024,80,Conveyance Independent Data,MWD/LWD,Pipe conveyed,Wireline,Open-hole,Cased-hole,Permanent sensors,9/14/2024,81,Geosteering,MWD/LWD for distance to fluid contacts,distance to cap rock,Location relative to seismic cross section,VSP while drilling,Single well imaging,Ahead of drill-bit measurement,9/14/2024,82,Behind Casing Reservoir Sensors,Common characteristics,Sensor are in direct contact with the reservoir, installed outside the casing,Installed in the well or dedicated observation well,Sensor types,Pressure - Reservoir pressure monitoring,Resistivity electrodes - Water saturation monitoring,Geophones - Gas saturation monitoring,9/14/2024,83,
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 幼儿教育


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!