线性代数课件第1章:矩阵与行列式课件

上传人:仙*** 文档编号:241655831 上传时间:2024-07-13 格式:PPT 页数:214 大小:6.18MB
返回 下载 相关 举报
线性代数课件第1章:矩阵与行列式课件_第1页
第1页 / 共214页
线性代数课件第1章:矩阵与行列式课件_第2页
第2页 / 共214页
线性代数课件第1章:矩阵与行列式课件_第3页
第3页 / 共214页
点击查看更多>>
资源描述
第第1章章 矩阵与行列式矩阵与行列式1.1 矩阵及其运算矩阵及其运算1.2 行列式行列式1.3 克拉默法则克拉默法则1.4 逆矩阵逆矩阵1.线性方程组线性方程组的解的解取决于取决于系数系数常数项常数项1.1 矩阵及其运算矩阵及其运算1.1.1矩阵的概念矩阵的概念对线性方程组的对线性方程组的研究可转化为对研究可转化为对这张表的研究这张表的研究.线性方程组的系数与常数项按原位置可排为线性方程组的系数与常数项按原位置可排为2.某航空公司在某航空公司在A,B,C,D四四城市之间开辟了若干航线城市之间开辟了若干航线,如图所示表示了四城市间的如图所示表示了四城市间的航班图航班图,如果从如果从A到到B有航班有航班,则用带箭头的线连接则用带箭头的线连接 A 与与B.四城市间的航班图情况常用表格来表示四城市间的航班图情况常用表格来表示:发站发站到站到站其中其中 表示有航班表示有航班.为了便于计算为了便于计算,把表中的把表中的 改成改成1,空白地方填上空白地方填上0,就得到一个数表就得到一个数表:这个数表反映了四城市间交通联接情况这个数表反映了四城市间交通联接情况.矩阵的定义矩阵的定义 由由 个数个数排成的排成的 行行 列的数表列的数表称为称为 矩阵矩阵.记作记作 简记为简记为元素是实数的矩阵称为元素是实数的矩阵称为实矩阵实矩阵,元素是复数的矩阵称为元素是复数的矩阵称为复矩阵复矩阵.例如例如是一个是一个 实矩阵实矩阵,是一个是一个 复矩阵复矩阵,是一个是一个 矩阵矩阵,是一个是一个 矩阵矩阵,是一个是一个 矩阵矩阵.几种特殊矩阵几种特殊矩阵(2)(2)只有一行的矩阵只有一行的矩阵称为称为行矩阵行矩阵(或或行向量行向量).(1)(1)行数与列数都等于行数与列数都等于 的矩阵的矩阵 ,称为,称为 阶阶方阵方阵.也可记作也可记作主对角线主对角线副对角线副对角线只有一列的矩阵只有一列的矩阵称为称为列矩阵列矩阵(或或列向量列向量).).(3)形如形如 的方阵的方阵,不全为不全为0 (4)元素全为零的矩阵称为元素全为零的矩阵称为零矩阵零矩阵,零零矩阵记作矩阵记作 或或 .注意注意不同阶数的零矩阵是不相等的不同阶数的零矩阵是不相等的.例如例如记作记作.(7)方阵方阵称为称为单位矩阵单位矩阵(或(或单位阵单位阵).同型矩阵与矩阵相等的概念同型矩阵与矩阵相等的概念 1.1.两个矩阵的行数相等两个矩阵的行数相等,列数相等时列数相等时,称为称为同同型矩阵型矩阵.全为全为1 2.2.两个矩阵两个矩阵 为为同型矩阵同型矩阵,并且并且对应元素相等对应元素相等,即即则称则称矩阵矩阵 相等相等,记作记作例如例如为为同型矩阵同型矩阵.例例1间的关系式间的关系式线性变换线性变换.系数矩阵系数矩阵线性变换与矩阵之间存在着一一对应关系线性变换与矩阵之间存在着一一对应关系.若线性变换为若线性变换为称之为称之为恒等变换恒等变换.对应对应线性变换线性变换对应对应这是一个以原点为中心这是一个以原点为中心旋转旋转 角的角的旋转变换旋转变换.、定义、定义一、矩阵的加法说明说明 只有当两个矩阵是同型矩阵时,才能进只有当两个矩阵是同型矩阵时,才能进行加法运算行加法运算.例如例如2 2、矩阵加法的运算规律矩阵加法的运算规律1 1、定义、定义二、数与矩阵相乘二、数与矩阵相乘2 2、数乘矩阵的运算规律、数乘矩阵的运算规律矩阵相加与数乘矩阵合起来矩阵相加与数乘矩阵合起来,统称为矩阵的统称为矩阵的线线性运算性运算.(设(设 为为 矩阵,矩阵,为数)为数)、定义、定义并把此乘积记作并把此乘积记作设设 是一个是一个 矩阵,矩阵,是一个是一个 矩阵,那末规定矩阵矩阵,那末规定矩阵 与矩阵与矩阵 的乘积的乘积是一个是一个 矩阵矩阵 ,其中,其中例例设设例例2 2故故解解注意注意只有当第一个矩阵的列数等于第二个矩阵只有当第一个矩阵的列数等于第二个矩阵的行数时,两个矩阵才能相乘的行数时,两个矩阵才能相乘.例如例如不存在不存在.、矩阵乘法的运算规律、矩阵乘法的运算规律(其中(其中 为数)为数);若若A是是 阶矩阵,则阶矩阵,则 为为A的的 次幂,即次幂,即 并且并且 注意注意矩阵不满足交换律,即:矩阵不满足交换律,即:例例 设设则则但也有例外,比如设但也有例外,比如设则有则有例例3 3 计算下列乘积:计算下列乘积:解解解解=()解解例例4 4用数学归纳法证明用数学归纳法证明当当 时,显然成立时,显然成立.假设假设 时成立,则时成立,则 时,时,所以对于任意的所以对于任意的 都有都有定义定义 把矩阵把矩阵 的行换成同序数的列得到的的行换成同序数的列得到的新矩阵,叫做新矩阵,叫做 的转置矩阵记作的转置矩阵记作 .例例1.1.4 转置转置转置矩阵的运算性质转置矩阵的运算性质例例5 5 已知已知解法解法1解法解法2注注:对称阵对称阵定义定义设设 为为 阶方阵,如果满足阶方阵,如果满足 ,即,即那末那末 称为称为对称阵对称阵.说明说明:例例6 6 设列矩阵设列矩阵 满足满足 证明证明例例7 7 证明任一证明任一 阶矩阵阶矩阵 都可表示成对称阵都可表示成对称阵与反对称阵之和与反对称阵之和.证明证明 所以所以C为对称矩阵为对称矩阵.所以所以B为反对称矩阵为反对称矩阵.命题得证命题得证.1.1.5 1.1.5 共轭矩阵共轭矩阵一、定义一、定义当当 为复矩阵时,用为复矩阵时,用 表示表示 的共轭的共轭复数,记,称为复数,记,称为 的共轭矩阵的共轭矩阵.二、运算性质二、运算性质1.1.6 矩阵的分块矩阵的分块对于行数和列数较高的矩阵对于行数和列数较高的矩阵 ,为了,为了简化运算,经常采用简化运算,经常采用分块法分块法,使大矩阵的,使大矩阵的运算化成小矩阵的运算运算化成小矩阵的运算.具体做法是:将具体做法是:将矩阵矩阵 用若干条纵线和横线分成许多个小用若干条纵线和横线分成许多个小矩阵,每一个小矩阵称为矩阵,每一个小矩阵称为 的的子块子块,以子,以子块为元素的形式上的矩阵称为块为元素的形式上的矩阵称为分块矩阵分块矩阵.例如例如分块矩阵的运算规则分块矩阵的运算规则例例1 设设解解则则又又于是于是小结小结(1)(1)矩阵的概念矩阵的概念(2)特殊矩阵特殊矩阵方阵方阵行矩阵与列矩阵行矩阵与列矩阵;单位矩阵单位矩阵;对角矩阵对角矩阵对角矩阵对角矩阵;零矩阵零矩阵.(3)矩矩阵阵运运算算加法加法数与矩阵相乘数与矩阵相乘矩阵与矩阵相乘矩阵与矩阵相乘转置矩阵转置矩阵对称阵对称阵 共轭矩阵共轭矩阵 在矩阵理论的研究中在矩阵理论的研究中,矩阵的分块是一种最矩阵的分块是一种最基本基本,最重要的计算技巧与方法最重要的计算技巧与方法.(1)加法加法(2)数乘数乘(3)乘法乘法 分块矩阵之间的运算分块矩阵之间的运算分块矩阵之间与一般矩阵之间的运算性质类似分块矩阵之间与一般矩阵之间的运算性质类似(4)(4)转置转置成立的充要条件是什么成立的充要条件是什么?思考题思考题答答故故 成立的充要条件为成立的充要条件为1.2 行列式1.2.1 行列式的定义用消元法解二元线性方程组用消元法解二元线性方程组一、二阶行列式的引入一、二阶行列式的引入方程组的解为方程组的解为由方程组的四个系数确定由方程组的四个系数确定.由四个数排成二行二列(横排称行、竖排由四个数排成二行二列(横排称行、竖排称列)的数表称列)的数表定义定义定义定义即即主对角线主对角线副对角线副对角线对角线法则对角线法则二阶行列式的计算二阶行列式的计算若记若记对于二元线性方程组对于二元线性方程组系数行列式系数行列式则二元线性方程组的解为则二元线性方程组的解为注意注意 分母都为原方程组的系数行列式分母都为原方程组的系数行列式.例例例例1 1 1 1解解二、三阶行列式定义定义定义定义记记记记(6 6)式称为数表()式称为数表(5 5)所确定的)所确定的三阶行列式三阶行列式三阶行列式三阶行列式.(1)(1)沙路法沙路法三阶行列式的计算三阶行列式的计算.列标列标行标行标(2)(2)(2)(2)对角线法则对角线法则对角线法则对角线法则注意注意 红线上三元素的乘积冠以正号,蓝线上三红线上三元素的乘积冠以正号,蓝线上三元素的乘积冠以负号元素的乘积冠以负号说明说明1 对角线法则只适用于二阶与三阶行列式对角线法则只适用于二阶与三阶行列式 如果三元线性方程组如果三元线性方程组的系数行列式的系数行列式 利用三阶行列式求解三元线性方程组利用三阶行列式求解三元线性方程组 2 2.三阶行列式包括三阶行列式包括3!3!项项,每一项都是位于不同行每一项都是位于不同行,不同列的三个元素的乘积不同列的三个元素的乘积,其中三项为正其中三项为正,三项为三项为负负.若记若记得得例例例例按对角线法则,有按对角线法则,有 例例例例3 3 3 3解解解解方程左端方程左端例例4 4 解解 设所求的一元二次多项式为设所求的一元二次多项式为由题意得由题意得得一个关于未知数得一个关于未知数 的线性方程组的线性方程组,又又得得故所求多项式为故所求多项式为三、全排列及其逆序数引例引例用用1、2、3三个数字,可以组成多少个没三个数字,可以组成多少个没有重复数字的三位数?有重复数字的三位数?解解1 2 3123百位百位十位十位1231个位个位12 3种放法种放法.共有共有问题问题定义定义把把 个不同的元素排成一列,叫做这个不同的元素排成一列,叫做这 个个元素的全排列(或排列)元素的全排列(或排列).个不同的元素的所有排列的种数,通常个不同的元素的所有排列的种数,通常用用 表示表示.由引例由引例同理同理 在一个排列在一个排列 中,若数中,若数 则称这两个数组成一个逆序则称这两个数组成一个逆序.例如例如 排列排列32514 中,中,定义定义 我们规定各元素之间有一个标准次序我们规定各元素之间有一个标准次序,n 个个不同的自然数,规定由小到大为不同的自然数,规定由小到大为标准次序标准次序.排列的逆序数排列的逆序数3 2 5 1 4逆序逆序逆序逆序逆序逆序定义定义 一个排列中所有逆序的总数称为此排列的一个排列中所有逆序的总数称为此排列的逆序数逆序数.例如例如 排列排列32514 中,中,3 2 5 1 4逆序数为逆序数为31故此排列的故此排列的逆序数为逆序数为3+1+0+1+0=5.计算排列逆序数的方法计算排列逆序数的方法方法方法1 1分别计算出排在分别计算出排在 前面比它大的数前面比它大的数码之和即分别算出码之和即分别算出 这这 个元素个元素的逆序数,这个元素的逆序数的总和即为所求的逆序数,这个元素的逆序数的总和即为所求排列的逆序数排列的逆序数.逆序数为奇数的排列称为逆序数为奇数的排列称为奇排列奇排列;逆序数为偶数的排列称为逆序数为偶数的排列称为偶排列偶排列.排列的奇偶性排列的奇偶性分别计算出排列中每个元素前面比它大的数码分别计算出排列中每个元素前面比它大的数码个数之和,即算出排列中每个元素的逆序数,个数之和,即算出排列中每个元素的逆序数,这每个元素的逆序数之总和即为所求排列的逆这每个元素的逆序数之总和即为所求排列的逆序数序数.方法方法2 2例例1 1 求排列求排列32514的逆序数的逆序数.解解在排列在排列32514中中,3排在首位排在首位,逆序数为逆序数为0;2的前面比的前面比2大的数只有一个大的数只有一个3,故逆序数为故逆序数为1;3 2 5 1 4于是排列于是排列32514的逆序数为的逆序数为5的前面没有比的前面没有比5大的数大的数,其逆序数为其逆序数为0;1的前面比的前面比1大的数有大的数有3个个,故逆序数为故逆序数为3;4的前面比的前面比4大的数有大的数有1个个,故逆序数为故逆序数为1;例例2 2 计算下列排列的逆序数,并讨论它们的奇计算下列排列的逆序数,并讨论它们的奇 偶性偶性.解解此排列为此排列为偶排列偶排列.解解当当 时为偶排列;时为偶排列;当当 时为奇排列时为奇排列.解解当当 为偶数时排列为偶排列,为偶数时排列为偶排列,当当 为奇数时排列为奇排列为奇数时排列为奇排列.四、对换定义定义在排列中,将任意两个元素对调,其余在排列中,将任意两个元素对调,其余元素不动,这种作出新排列的手续叫做元素不动,这种作出新排列的手续叫做对换对换将相邻两个元素对调,叫做将相邻两个元素对调,叫做相邻对换相邻对换例如例如对换与排列的奇偶性的关系定理定理1 1一个排列中的任意两个元素对换,排列一个排列中的任意两个元素对换,排列改变奇偶性改变奇偶性证明证明设排列为设排列为对换对换 与与除除 外,其它元素的逆序数不改变外,其它元素的逆序数不改变.当当 时,时,的逆序数不变的逆序数不变;经对换后经对换后 的逆序数增加的逆序数增加1,经对换后经对换后 的逆序数不变的逆序数不变,的逆序数减少的逆序数减少1.因此对换相邻两个元素,排列改变奇偶性因此对换相邻两个元素,排列改变奇偶性.设排列为设排列为当当 时,时,现来对换现来对换 与与次相邻对换次相邻对换次相邻对换次相邻对换次相邻对换次相邻对换所以一个排列中的任意两个元素对换,排列改变所以一个排列中的任意两个元素对换,排列改变奇偶性奇偶性.推论推论奇排列调成标准排列的对换次数为奇数,奇排列调成标准排列的对换次数为奇数,偶排列调成标准排列的对换次数为偶数偶排列调成标准排列的对换次数为偶数.证明证明 由定理由定理1知对换的次数就是排列奇偶性的知对换的次数就是排列奇偶性的变化次数变化次数,而标准排列是偶排列而标准排列是偶排列(逆序数为逆序数为0),因此因此知推论成立知推论成立.证证 设在全部设在全部 阶排列中有阶排列中有 个奇排列个奇排列,个偶个偶排列排列,现来证现来证 .将将 个奇排列的前两个数对换个奇排列的前两个数对换,则这则这 个奇排个奇排列全变成偶排列列全变成偶排列,并且它们彼此不同并且它们彼此不同,所以所以若将若将 个偶排列的前两个数对换个偶排列的前两个数对换,则这则这 个偶排列个偶排列全变成奇排列全变成奇排列,并且它们彼此不同并且它们彼此不同,于是有于是有故必有故必有例:例:证明证明 在全部在全部 阶排列中阶排列中 ,奇偶排列各占奇偶排列各占一半一半.对于三阶行列式而言对于三阶行列式而言:说明说明(1)三阶行列式共有)三阶行列式共有 项,即项,即 项项(2)每项都是位于不同行不同列的三个元素的)每项都是位于不同行不同列的三个元素的乘积乘积五、五、n阶行列式的定义阶行列式的定义(3)每项的正负号都取决于位于不同行不同列)每项的正负号都取决于位于不同行不同列 的三个元素的下标排列的三个元素的下标排列例如例如列标排列的逆序数为列标排列的逆序数为列标排列的逆序数为列标排列的逆序数为偶排列偶排列奇排列奇排列定义定义说明说明1、行列式是一种特定的算式,它是根据求解方、行列式是一种特定的算式,它是根据求解方程个数和未知量个数相同的一次方程组的需要而程个数和未知量个数相同的一次方程组的需要而定义的定义的;2、阶行列式是阶行列式是 项的代数和项的代数和;3、阶行列式的每项都是位于不同行、不同阶行列式的每项都是位于不同行、不同列列 个元素的乘积个元素的乘积;4、一阶行列式一阶行列式 不要与绝对值记号相混淆不要与绝对值记号相混淆;5、的符号为的符号为例例1 1计算对角行列式计算对角行列式分析分析展开式中项的一般形式是展开式中项的一般形式是所以所以 只能等于只能等于 ,同理可得同理可得解解即行列式中不为零的项为即行列式中不为零的项为例例2 2 计算上计算上三角行列式三角行列式分析分析展开式中项的一般形式是展开式中项的一般形式是所以不为零的项只有所以不为零的项只有解解例例3同理可得同理可得下三角行列式下三角行列式例例4 4 证明证明对角行列式对角行列式第一式是显然的第一式是显然的,下面证第二式下面证第二式.若记若记则依行列式定义则依行列式定义证毕证毕证明证明1.2.2 行列式的性质性质性质性质性质1 1 1 1 行列式与它的转置行列式相等行列式与它的转置行列式相等.行列式行列式 称为行列式称为行列式 的转置行列式的转置行列式.记记证明证明按定义按定义又因为行列式又因为行列式D可表示为可表示为故故证毕证毕这里这里性质性质性质性质2 2 2 2 互换行列式的两行(列)互换行列式的两行(列),行列式变号行列式变号.证明证明证明证明设行列式设行列式说明说明 行列式中行与列具有同等的地位行列式中行与列具有同等的地位,因此行列因此行列式的性质凡是对行成立的对列也同样成立式的性质凡是对行成立的对列也同样成立.是由行列式是由行列式 变换变换 两行得到的两行得到的,即当即当 时时,当当 时时,于是于是则有则有故故证毕证毕例如例如推论推论 如果行列式有两行(列)完全相同,则如果行列式有两行(列)完全相同,则此行列式为零此行列式为零.证明证明互换相同的两行,有互换相同的两行,有 性质性质性质性质3 3 3 3 行列式的某一行(列)中所有的元素都行列式的某一行(列)中所有的元素都乘以同一数乘以同一数 ,等于用数,等于用数 乘此行列式乘此行列式.推论推论推论推论行列式的某一行(列)中所有元素的公因行列式的某一行(列)中所有元素的公因子可以提到行列式符号的外面子可以提到行列式符号的外面性质性质行列式中如果有两行(列)元素成比行列式中如果有两行(列)元素成比例,则此行列式为零例,则此行列式为零证明证明性质性质5 5若行列式的某一列(行)的元素都是两若行列式的某一列(行)的元素都是两数之和数之和.则则D等于下列两个行列式之和:等于下列两个行列式之和:例如例如性质性质把行列式的某一列(行)的各元素乘以把行列式的某一列(行)的各元素乘以同一数然后加到另一列同一数然后加到另一列(行行)对应的元素上去,行对应的元素上去,行列式不变列式不变例如例如例例应用举例计算行列式常用方法:利用运算把行列式计算行列式常用方法:利用运算把行列式化为上三角形行列式,从而算得行列式的值化为上三角形行列式,从而算得行列式的值解解例例2 2 计算计算 阶行列式阶行列式解解将第将第 列都加到第一列得列都加到第一列得例例3 3证明证明证明证明例例4 解解1.2.3 行列式展开定理 例如例如一、余子式与代数余子式在在 阶行列式中,把元素阶行列式中,把元素 所在的第所在的第 行和第行和第 列划去后,留下来的列划去后,留下来的 阶行列式叫做元素阶行列式叫做元素 的的余子式余子式,记作,记作例如例如引理引理 一个一个 阶行列式,如果其中第阶行列式,如果其中第 行所有行所有元素除元素除 外都为零,那末这行列式等于外都为零,那末这行列式等于 与它的与它的代数余子式的乘积,即代数余子式的乘积,即 例如例如证证当当 位于第一行第一列时位于第一行第一列时,即有即有又又从而从而在证一般情形在证一般情形,此时此时得得得得中的余子式中的余子式故得故得于是有于是有定理定理 行列式等于它的任一行(列)的各元素行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即与其对应的代数余子式乘积之和,即证证二、行列式按行(列)展开法则二、行列式按行(列)展开法则推论推论 行列式任一行(列)的元素与另一行(列)行列式任一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零,即的对应元素的代数余子式乘积之和等于零,即证证同理同理相同相同关于代数余子式的重要性质关于代数余子式的重要性质例例1 计算行列式计算行列式解解 证证用数学归纳法用数学归纳法例例2证明范德蒙德证明范德蒙德(Vandermonde)行列式行列式 n-1阶范德蒙德行列式阶范德蒙德行列式例例求第一行各元素的代数余子式之和求第一行各元素的代数余子式之和解:解:七、方阵的行列式定义定义 由由 阶方阵阶方阵 的元素所构成的行列式,的元素所构成的行列式,叫做方阵叫做方阵 的行列式,记作的行列式,记作 或或运算性质运算性质定义定义 行列式行列式 的各个元素的代数余子式的各个元素的代数余子式 所所构成的如下矩阵构成的如下矩阵性质性质证明证明则则称为矩阵称为矩阵 的的伴随矩阵伴随矩阵.故故同理可得同理可得 1.3 克拉默法则克拉默法则设线性方程组设线性方程组则称此方程组为则称此方程组为 非非齐次线性方程组齐次线性方程组;此时称方程组为此时称方程组为齐次线性方程组齐次线性方程组.非齐次与齐次线性方程组的概念非齐次与齐次线性方程组的概念克拉默法则:克拉默法则:如果线性方程组如果线性方程组的系数行列式不等于零,即的系数行列式不等于零,即其中其中 是把系数行列式是把系数行列式 中第中第 列的元素用方程列的元素用方程组右端的常数项代替后所得到的组右端的常数项代替后所得到的 阶行列式,即阶行列式,即那么线性方程组那么线性方程组 有解,并且解是唯一的,解有解,并且解是唯一的,解可以表为可以表为证明证明在把在把 个方程依次相加,得个方程依次相加,得由代数余子式的性质可知由代数余子式的性质可知,于是于是当当 时时,方程组方程组 有唯一的一个解有唯一的一个解由于方程组由于方程组 与方程组与方程组 等价等价,故故也是方程组的也是方程组的 解解.定理定理1 1 如果线性方程组如果线性方程组 的系数行列式的系数行列式 则则 一定有解一定有解,且解是唯一的且解是唯一的 .定理定理2 2 如果线性方程组如果线性方程组 无解或有两个不同的无解或有两个不同的解,则它的系数行列式必为零解,则它的系数行列式必为零.齐次线性方程组的相关定理齐次线性方程组的相关定理定理定理 如果齐次线性方程组如果齐次线性方程组 的系数行列式的系数行列式 则齐次线性方程组则齐次线性方程组 没有非零解没有非零解.有非零解有非零解.系数行列式系数行列式定理定理 如果齐次线性方程组如果齐次线性方程组 有非零解有非零解,则它则它的系数行列式必为零的系数行列式必为零.例例1 1 用克拉默法则解方程组用克拉默法则解方程组解解例例3 问问 取何值时,齐次方程组取何值时,齐次方程组有非零解?有非零解?解解齐次方程组有非零解,则齐次方程组有非零解,则所以所以 或或 时齐次方程组有非零解时齐次方程组有非零解.1.1.用克拉默法则解方程组的两个条件用克拉默法则解方程组的两个条件(1)(1)方程个数等于未知量个数方程个数等于未知量个数;(2)(2)系数行列式不等于零系数行列式不等于零.2.2.克拉默法则建立了线性方程组的解和已知的系克拉默法则建立了线性方程组的解和已知的系数与常数项之间的关系数与常数项之间的关系.它主要适用于理论推导它主要适用于理论推导.注:用定义计算(证明)用定义计算(证明)计算(证明)行列式的方法计算(证明)行列式的方法利用范德蒙行列式计算利用范德蒙行列式计算用化三角形行列式计算用化三角形行列式计算用降阶法计算用降阶法计算用拆成行列式之和(积)计算用拆成行列式之和(积)计算用递推法计算用递推法计算用数学归纳法用数学归纳法计算行列式的方法比较灵活,同一行列式可计算行列式的方法比较灵活,同一行列式可以有多种计算方法;有的行列式计算需要几种方以有多种计算方法;有的行列式计算需要几种方法综合应用在计算时,首先要仔细考察行列式法综合应用在计算时,首先要仔细考察行列式在构造上的特点,利用行列式的性质对它进行变在构造上的特点,利用行列式的性质对它进行变换后,再考察它是否能用常用的几种方法换后,再考察它是否能用常用的几种方法1.4 逆矩阵逆矩阵则矩阵则矩阵 称为称为 的可逆矩阵或逆阵的可逆矩阵或逆阵.1.4.1 逆矩阵及其性质逆矩阵及其性质在数的运算中,在数的运算中,当数当数 时,时,有有其中其中 为为 的倒数,的倒数,或称或称 的逆的逆.在矩阵的运算中,在矩阵的运算中,单位阵单位阵 相当于数的乘法运算中相当于数的乘法运算中 的的1,那么,对于矩阵那么,对于矩阵 ,如果存在一个矩阵如果存在一个矩阵 ,使得使得一、逆矩阵的概念和性质一、逆矩阵的概念和性质 定义定义 对于对于 阶矩阵阶矩阵 ,如果有一个,如果有一个 阶矩阵阶矩阵 则说矩阵则说矩阵 是是可逆可逆的,的,并把矩阵并把矩阵 称为称为 的的逆矩阵逆矩阵.,使得使得例例 设设说明说明 若若 是可逆矩阵,则是可逆矩阵,则 的逆矩阵是的逆矩阵是唯一唯一的的.若设若设 和和 是是 的可逆矩阵,的可逆矩阵,则有则有可得可得所以所以 的逆矩阵是唯一的的逆矩阵是唯一的,即即例例1 1 设设解解设设 是是 的逆矩阵的逆矩阵,则则利用待定系数法利用待定系数法又因为又因为所以所以定理定理1 1 矩阵矩阵 可逆的充要条件是可逆的充要条件是 ,且,且 证明证明若若 可逆,可逆,按逆矩阵的定义得按逆矩阵的定义得证毕证毕奇异矩阵与非奇异矩阵的定义奇异矩阵与非奇异矩阵的定义:推论推论证明证明逆矩阵的运算性质逆矩阵的运算性质证明证明证明证明例例2 2 求方阵求方阵 的逆矩阵的逆矩阵.解解二、逆矩阵的求法二、逆矩阵的求法同理可得同理可得故故解解例例3 3例例4 4 设设解解 于是于是例例6 6解解 例例7 7解解例例8 8解解 解解解解分块对角矩阵的行列式具有下述性质分块对角矩阵的行列式具有下述性质:注意注意:可以利用分块对角矩阵可以利用分块对角矩阵例例12 12 设设解解证:证:例例1313例例 14解解()根据分块矩阵的乘法,得()根据分块矩阵的乘法,得()由()可得()由()可得(一一)逆矩阵的概念及运算性质逆矩阵的概念及运算性质.(二二)逆矩阵的计算方法逆矩阵的计算方法逆矩阵逆矩阵 存在存在小结小结思考题答答
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 管理文书 > 施工组织


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!