资源描述
专题跟踪检测(十一) 立体几何中的向量方法1(2018全国卷)如图,边长为2的正方形ABCD所在的平面与半圆弧所在平面垂直,M是上异于C,D的点(1)证明:平面AMD平面BMC;(2)当三棱锥MABC体积最大时,求平面MAB与平面MCD所成二面角的正弦值解:(1)证明:由题设知,平面CMD平面ABCD,交线为CD.因为BCCD,BC平面ABCD,所以BC平面CMD,所以BCDM.因为M为上异于C,D的点,且DC为直径,所以DMCM.又BCCMC,所以DM平面BMC.因为DM平面AMD,所以平面AMD平面BMC.(2)以D为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系Dxyz.当三棱锥MABC的体积最大时,M为的中点由题设得D(0,0,0),A(2,0,0),B(2,2,0),C(0,2,0),M(0,1,1),(2,1,1),(0,2,0),(2,0,0),设n(x,y,z)是平面MAB的法向量,则即可取n(1,0,2),又是平面MCD的一个法向量,所以cosn,sinn,.所以平面MAB与平面MCD所成二面角的正弦值是.2.(2018唐山模拟)如图,在四棱锥PABCD中,PC底面ABCD,底面ABCD是直角梯形,ABAD,ABCD,AB2AD2CD,E是PB的中点(1)求证:平面EAC平面PBC;(2)若二面角PACE的余弦值为,求直线PA与平面EAC所成角的正弦值解:(1)证明:因为PC平面ABCD,AC平面ABCD,所以ACPC.因为AB2AD2CD,所以ACBCADCD,所以AC2BC2AB2,故ACBC.又BCPCC,所以AC平面PBC.因为AC平面EAC,所以平面EAC平面PBC.(2)如图,以C为坐标原点, , 的方向分别为x轴,y轴,z轴的正方向,建立空间直角坐标系,并设CB2,CP2a(a0)则C(0,0,0),A(0,2,0),B(2,0,0),P(0,0,2a),则E(1,0,a),(0,2,0),(0,0,2a), (1,0,a),易知m(1,0,0)为平面PAC的一个法向量设n(x,y,z)为平面EAC的法向量,则即取xa,则z1,n(a,0,1)依题意,|cosm,n|,解得a.于是n(,0,1),(0,2,2)设直线PA与平面EAC所成角为,则sin |cos,n|.即直线PA与平面EAC所成角的正弦值为.3(2018西安质检)如图,四棱柱ABCDA1B1C1D1的底面ABCD是菱形,ACBDO,A1O底面ABCD,AB2,AA13.(1)证明:平面A1CO平面BB1D1D;(2)若BAD60,求二面角BOB1C的余弦值解:(1)证明:A1O平面ABCD,BD平面ABCD.A1OBD.四边形ABCD是菱形,COBD.A1OCOO,BD平面A1CO.BD平面BB1D1D,平面A1CO平面BB1D1D.(2)A1O平面ABCD,COBD,OB,OC,OA1两两垂直,以O为坐标原点,的方向为x轴,y轴,z轴的正方向建立如图所示的空间直角坐标系AB2,AA13,BAD60,OBOD1,OAOC,OA1.则O(0,0,0),B(1,0,0),C(0,0),A(0,0),A1(0,0,),(1,0,0),(0,),(1,),(0,0)设平面OBB1的法向量为n(x1,y1,z1),则即令y1,得n(0,1)是平面OBB1的一个法向量设平面OCB1的法向量m(x2,y2,z2),则即令z21,得m(,0,1)为平面OCB1的一个法向量,cosn,m,由图可知二面角BOB1C是锐二面角,二面角BOB1C的余弦值为.4(2018长春质检)如图,在四棱锥PABCD中,底面ABCD为菱形,PA平面ABCD,E为PD的中点(1)证明:PB平面ACE;(2)设PA1,ABC60,三棱锥EACD的体积为,求二面角DAEC的余弦值解:(1)证明:连接BD交AC于点O,连接OE.在PBD中,PEDE,BODO,所以PBOE.又PB平面ACE,OE平面ACE,所以PB平面ACE.(2)由题易知VPABCD2VPACD4VEACD,设菱形ABCD的边长为a,则VPABCDSABCDPA1,解得a.取BC的中点为M,连接AM,则AMAD.以点A为坐标原点,分别以,的方向为x轴,y轴,z轴的正方向,建立如图所示的空间直角坐标系,则A(0,0,0),E,C,设n1(x,y,z)为平面AEC的法向量,则即取x1,则n1(1,3)为平面AEC的一个法向量又易知平面AED的一个法向量为n2(1,0,0),所以cosn1,n2,由图易知二面角DAEC为锐二面角,所以二面角DAEC的余弦值为.5.(2018郑州质检)如图,在三棱锥PABC中,平面PAB平面ABC,AB6,BC2,AC2,D,E分别为线段AB,BC上的点,且AD2DB,CE2EB,PDAC.(1)求证:PD平面ABC;(2)若直线PA与平面ABC所成的角为45,求平面PAC与平面PDE所成锐二面角的大小解:(1)证明:AC2,BC2,AB6,AC2BC2AB2,ACB90,cosABC.易知BD2,CD222(2)2222cosABC8,CD2,易知AD4,CD2AD2AC2,CDAB.平面PAB平面ABC,平面PAB平面ABCAB,CD平面PAB,CDPD,PDAC,ACCDC,PD平面ABC.(2)由(1)知PD,CD,AB两两互相垂直,可建立如图所示的空间直角坐标系Dxyz,直线PA与平面ABC所成的角为45,即PAD45,PDAD4,则A(0,4,0),C(2,0,0),B(0,2,0),P(0,0,4),(2,2,0),(2,4,0),(0,4,4)AD2DB,CE2EB,DEAC.由(1)知ACBC,DEBC,又PD平面ABC,PDBC,PDDED,CB平面PDE,(2,2,0)为平面PDE的一个法向量设平面PAC的法向量为n(x,y,z),则令z1,得x,y1,n(,1,1)为平面PAC的一个法向量cosn,平面PAC与平面PDE所成的锐二面角的余弦值为,故平面PAC与平面PDE所成的锐二面角为30.6(2019届高三洛阳联考)如图1,在直角梯形ABCD中,ADBC,ABBC,BDDC,点E是BC边的中点,将ABD沿BD折起,使平面ABD平面BCD,连接AE,AC,DE,得到如图2所示的几何体(1)求证:AB平面ADC;(2)若AD1,二面角CABD的平面角的正切值为,求二面角BADE的余弦值解:(1)证明:因为平面ABD平面BCD,平面ABD平面BCDBD,BDDC,所以DC平面ABD.因为AB平面ABD,所以DCAB.又因为ADAB,DCADD,所以AB平面ADC.(2)由(1)知AB平面ADC,所以二面角CABD的平面角为CAD.又DC平面ABD,AD平面ABD,所以DCAD.依题意tanCAD.因为AD1,所以CD.设ABx(x0),则BD.依题意ABDDCB,所以,即.解得x,故AB,BD,BC3.法一:以D为坐标原点,DB,DC所在直线为x轴,y轴建立如图所示的空间直角坐标系Dxyz,则D(0,0,0),B(,0,0),C(0,0),E,A,所以,.由(1)知平面BAD的一个法向量n(0,1,0)设平面ADE的法向量为m(x,y,z),则即令x,得y1,z1,所以m(,1,1)为平面ADE的一个法向量所以cosn,m.由图可知二面角BADE的平面角为锐角,所以二面角BADE的余弦值为.法二:因为DC平面ABD,所以过点E作EFDC交BD于F,则EF平面ABD.因为AD平面ABD,所以EFAD.过点F作FGAD于G,连接GE,所以AD平面EFG,因此ADGE,所以二面角BADE的平面角为EGF.由平面几何的知识求得EFCD,FGAB,所以EG,所以cosEGF.所以二面角BADE的余弦值为.7.如图,在四棱锥PABCD中,侧面PAD底面ABCD,底面ABCD是平行四边形,ABC45,ADAP2,ABDP2,E为CD的中点,点F在线段PB上(1)求证:ADPC;(2)试确定点F的位置,使得直线EF与平面PDC所成的角和直线EF与平面ABCD所成的角相等解:(1)证明:连接AC,因为AB2,BC2,ABC45,由余弦定理得,AC2AB2BC22ABBCcos 454,得AC2,所以AC2BC2AB2,所以ACB90,即BCAC.又ADBC,所以ADAC,因为ADAP2,DP2,所以AD2AP2DP2,所以PAD90,即PAAD,又APACA,所以AD平面PAC.又PC平面PAC,所以ADPC.(2)因为侧面PAD底面ABCD,侧面PAD底面ABCDAD,PAAD,所以PA底面ABCD,所以直线AC,AD,AP两两互相垂直,以A为坐标原点,直线AD,AC,AP分别为x轴,y轴,z轴建立如图所示的空间直角坐标系Axyz,则A(0,0,0),D(2,0,0),C(0,2,0),B(2,2,0),E(1,1,0),P(0,0,2),所以(0,2,2),(2,0,2),(2,2,2)设(0,1),则(2,2,2),F(2,2,22),所以(21,21,22),易得平面ABCD的一个法向量为m(0,0,1)设平面PDC的法向量为n(x,y,z),则即令x1,得n(1,1,1)因为直线EF与平面PDC所成的角和直线EF与平面ABCD所成的角相等,所以|cos,m|cos,n|,即,所以|22|,即|1|(0,1),解得,所以.即当时,直线EF与平面PDC所成的角和直线EF与平面ABCD所成的角相等8. 如图,C是以AB为直径的圆O上异于A,B的点,平面PAC平面ABC,PAPCAC2,BC4,E,F分别是PC,PB的中点,记平面AEF与平面ABC的交线为直线l.(1)证明:直线l平面PAC;(2)在直线l上是否存在点Q,使直线PQ分别与平面AEF,直线EF所成的角互余?若存在,求出AQ的长;若不存在,请说明理由解:(1)证明:E,F分别是PC,PB的中点,BCEF,又EF平面EFA,BC平面EFA,BC平面EFA,又BC平面ABC,平面EFA平面ABCl,BCl,又BCAC,平面PAC平面ABCAC,平面PAC平面ABC,BC平面PAC,l平面PAC.(2)以C为坐标原点,CA为x轴,CB为y轴,过C垂直于平面ABC的直线为z轴,建立如图所示的空间直角坐标系,则C(0,0,0),A(2,0,0),B(0,4,0),P(1,0,),E,F.,(0,2,0),设Q(2,y,0),平面AEF的一个法向量为m(x,y,z),则即取z,得m(1,0,)又(1,y,),|cos,|,|cos,m|,依题意,得|cos,|cos,m,y1.直线l上存在点Q,使直线PQ分别与平面AEF,直线EF所成的角互余,AQ的长为1.
展开阅读全文