2018版高中数学第二章平面向量2.2.3向量数乘运算及其几何意义课件新人教A版必修

上传人:xiao****017 文档编号:22234156 上传时间:2021-05-22 格式:PPT 页数:37 大小:1.28MB
返回 下载 相关 举报
2018版高中数学第二章平面向量2.2.3向量数乘运算及其几何意义课件新人教A版必修_第1页
第1页 / 共37页
2018版高中数学第二章平面向量2.2.3向量数乘运算及其几何意义课件新人教A版必修_第2页
第2页 / 共37页
2018版高中数学第二章平面向量2.2.3向量数乘运算及其几何意义课件新人教A版必修_第3页
第3页 / 共37页
点击查看更多>>
资源描述
2.2.3向量数乘运算及其几何意义第二章2.2平面向量的线性运算 学习目标1.了解向量数乘的概念,并理解这种运算的几何意义.2.理解并掌握向量数乘的运算律,会运用向量数乘运算律进行向量运算.3.理解并掌握两向量共线的性质及其判定方法,并能熟练地运用这些知识处理有关共线向量问题. 题型探究问题导学内容索引 当堂训练 问题导学 知识点一向量数乘的定义思考1实数与向量相乘结果是实数还是向量?答案向量. 答案思考2向量3a,3a与a从长度和方向上分析具有怎样的关系?答案 3a的长度是a的长度的3倍,它的方向与向量a的方向相同.3a的长度是a的长度的3倍,它的方向与向量a的方向相反. 思考3a的几何意义是什么?答案a的几何意义就是将表示向量a的有向线段伸长或压缩.当|1时,表示a的有向线段在原方向(0)或反方向(0)上伸长为原来的|倍. 答案 梳理向量数乘运算实数与向量a的积是一个 ,这种运算叫做向量的 ,记作 ,其长度与方向规定如下:(1)|a| .特别地,当0或a0时,0a 或0 .向量数乘a|a| 00 0 0 思考 知识点二向量数乘的运算律类比实数的运算律,向量数乘有怎样的运算律?答案答案 结合律,分配律. 梳理向量数乘运算律(1)(a)()a;(2)()aaa;(3)(ab)ab. 知识点三向量共线定理思考1若b2a,b与a共线吗? 答案答案根据共线向量及向量数乘的意义可知,b与a共线.如果有一个实数,使ba(a 0),那么b与a是共线向量;反之,如果b与a(a 0)是共线向量,那么有且只有一个实数,使得ba. 思考2若b与非零向量a共线,是否存在满足ba?若b与向量a共线呢?答案答案若b与非零向量a共线,存在满足ba;若b与向量a共线,当a0,b 0时,不存在满足ba. 梳理(1)向量共线定理向量a (a 0)与b共线,当且仅当有唯一一个实数,使 .(2)向量的线性运算向量的 、 、 运算统称为向量的线性运算,对于任意向量a、b,以及任意实数、1、2,恒有(1a2b) .ba加减数乘1a2b 题型探究 解答 类型一向量数乘的基本运算4a4b. 解答(2)已知向量为a,b,未知向量为x,y,向量a,b,x,y满足关系式3x2ya,4x3yb,求向量x,y.由32,得x3a2b,代入得3(3a2b)2ya,所以x3a2b,y4a3b. 反 思 与 感 悟(1)向量的数乘运算类似于代数多项式的运算,例如实数运算中的去括号、移项、合并同类项、提取公因式等变形手段在数与向量的乘积中同样适用,但是这里的“同类项”、“公因式”是指向量,实数看作是向量的系数.(2)向量也可以通过列方程和方程组求解,同时在运算过程中多注意观察,恰当的运用运算律,简化运算. 解答跟踪训练1(1)计算:(ab)3(ab)8a.解(ab)3(ab)8a(a3a)(b3b)8a2a4b8a10a4b. 答案解析 类型二向量共线的判定及应用 解答命题角度1判定向量共线或三点共线例2已知非零向量e1,e2不共线.解 b6a, a与b共线. 证明 A、B、D三点共线. 反 思 与 感 悟(1)向量共线的判断(证明)是把两向量用共同的已知向量来表示,进而互相表示,从而判断共线.(2)利用向量共线定理证明三点共线,一般先任取两点构造向量,从而将问题转化为证明两向量共线,需注意的是,在证明三点共线时,不但要利用ba(a 0),还要说明向量a,b有公共点. A,B,D 答案解析 A,B,D三点共线. 命题角度2利用向量共线求参数值例3已知非零向量e1,e2不共线,欲使ke1e2和e1ke2共线,试确定k的值. 解答解 ke1e2与e1ke2共线,存在实数,使ke1e2(e1ke2),则(k)e1(k1)e2, k1. 反 思 与 感 悟利用向量共线定理,即b与a(a 0)共线ba,既可以证明点共线或线共线问题,也可以根据共线求参数的值. 答案解析1 x1,y,则xy1. 类型三用已知向量表示其他向量 答案解析 解析示意图如图所示, 反 思 与 感 悟用已知向量表示未知向量的求解思路(1)先结合图形的特征,把待求向量放在三角形或平行四边形中.(2)然后结合向量的三角形法则或平行四边形法则及向量共线定理用已知向量表示未知向量.(3)当直接表示比较困难时,可以利用三角形法则和平行四边形法则建立关于所求向量和已知向量的等量关系,然后解关于所求向量的方程. 解答又 D,E为边AB的两个三等分点, 当堂训练 答案2 3 4 51 解析1.已知a5e,b3e,c4e,则2a3bc等于A.5e B.5eC.23e D.23e解析2a3bc25e3(3e)4e23e. 2 3 4 51解析如图,作出平行四边形ABEC,M是对角线的交点,故M是BC的中点,且是AE的中点,答案解析 2 3 4 51 答案解析 3.设e1,e2是两个不共线的向量,若向量me1ke2 (k R)与向量ne22e1共线,则所以n2m,此时,m,n共线. 答案解析A.P在ABC内部B.P在ABC外部C.P在AB边上或其延长线上D.P在AC边上2 3 4 51 解答2 3 4 51 规 律 与 方 法1.实数与向量可以进行数乘运算,但不能进行加减运算,例如a,a是没有意义的.2.a的几何意义就是把向量a沿着a的方向或反方向扩大或缩小为原来的|倍.向量 表示与向量a同向的单位向量.3.向量共线定理是证明三点共线的重要工具.即三点共线问题通常转化为向量共线问题.4.已知O,A,B是不共线的三点,且 (m,n R),A,P,B三点共线mn1. 本课结束
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 课件教案


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!