通信原理课设PCM编码器

上传人:fgh****35 文档编号:180631549 上传时间:2023-01-07 格式:DOC 页数:10 大小:208KB
返回 下载 相关 举报
通信原理课设PCM编码器_第1页
第1页 / 共10页
通信原理课设PCM编码器_第2页
第2页 / 共10页
通信原理课设PCM编码器_第3页
第3页 / 共10页
点击查看更多>>
资源描述
课 程 设 计 任 务 书学 院信息科学与工程专 业电子信息工程学生姓名申晨 学 号0703030233设计题目PCM脉冲编码器设计内容及要求:利用MATLAB/Simulink进行编程和仿真,仿真的内容可以是关于信源、信源编码、模拟调制、数字调制、多元调制、差错控制、多址技术、信道仿真及具体通信电路的动态仿真实现。也可以用MATLAB编程对通信的某一具体环节进行仿真。进度安排:2010年 06月28 日 选题目查阅资料2010年 06月29 日 编写软件源程序或建立仿真模块图2010年 06月30 日 调试程序或仿真模型2010年 07月01 日 性能分析及验收2010年 07月02 日 撰写课程设计报告、答辩 指导教师(签字): 年 月 日 学院院长(签字): 年 月 日 7摘 要PCM是脉冲编码调制的简称,是现代语音通信中数字化的重要编码方式。本课程设计利用MATLAB集成环境,对信号进行PCM编码调制,建立13折线A律PCM编码器模型,进一步绘制出对信号进行脉冲编码调制时域波形图,根据运行结果和波形分析PCM编码调制,加强对这部分内容的理解并了解如何运用于语音传输,光纤传输等领域在课程设计中,系统开发平台为Windows 2000,使用工具软件为MATLAB 7.1。在该平台运行程序完成了对脉冲编码调制以及对结果的观察。通过该课程设计,达到了对信号进行PCM编码的目的。,关键词:PCM;语音通信;A律;MATLAB目录1、引言12、系统介绍13、PCM编码中抽样、量化及编码的原理23.1、抽样23.2、量化23.3、编码53.4、设计与仿真64、心得体会65、参考文献7PCM编码器设计1、引言 随着电子技术和计算机技术的发展,仿真技术得到了广泛的应用。基于数字处理,通信系统的用于通信系统的动态仿真软件matlab具有强大的功能,可以满足从底层到高层不同层次的设计、分析使用,并且提供了嵌入式的模块分析方法,形成多层系统,使系统设计更加简洁明了,便于完成复杂系统的设计。2、系统介绍PCM即脉冲编码调制,在通信系统中完成将语音信号数字化功能。PCM的实现主要包括三个步骤完成:抽样、量化、编码。分别完成时间上离散、幅度上离散、及量化信号的二进制表示。根据CCITT的建议,为改善小信号量化性能,采用压扩非均匀量化,有两种建议方式,分别为A律和律方式,我国采用了A律方式,由于A律压缩实现复杂,常使用 13 折线法编码,采用非均匀量化PCM编码示意图见图1-1。低通滤波瞬时压缩抽 样量 化编 码低通滤波瞬时扩张解 调解 码信道再 生话音输入话音输出图1-1PCM原理框图3、PCM编码中抽样、量化及编码的原理3.1、抽样所谓抽样,就是对模拟信号进行周期性扫描,把时间上连续的信号变成时间上离散的信号。该模拟信号经过抽样后还应当包含原信号中所有信息,也就是说能无失真的恢复原模拟信号。它的抽样速率的下限是由抽样定理确定的。3.2、量化从数学上来看,量化就是把一个连续幅度值的无限数集合映射成一个离散幅度值的有限数集合。如图2所示,量化器Q输出L个量化值,k=1,2,3,L。常称为重建电平或量化电平。当量化器输入信号幅度落在与之间时,量化器输出电平为。这个量化过程可以表达为: 。模拟入量化器量化值这里称为分层电平或判决阈值。通常称为量化间隔。图1-2模拟信号的量化模拟信号的量化分为均匀量化和非均匀量化。由于均匀量化存在的主要缺点是:无论抽样值大小如何,量化噪声的均方根值都固定不变。因此,当信号较小时,则信号量化噪声功率比也就很小,这样,对于弱信号时的量化信噪比就难以达到给定的要求。通常,把满足信噪比要求的输入信号取值范围定义为动态范围,可见,均匀量化时的信号动态范围将受到较大的限制。为了克服这个缺点,实际中,往往采用非均匀量化。非均匀量化是根据信号的不同区间来确定量化间隔的。对于信号取值小的区间,其量化间隔也小;反之,量化间隔就大。它与均匀量化相比,有两个突出的优点。首先,当输入量化器的信号具有非均匀分布的概率密度(实际中常常是这样)时,非均匀量化器的输出端可以得到较高的平均信号量化噪声功率比;其次,非均匀量化时,量化噪声功率的均方根值基本上与信号抽样值成比例。因此量化噪声对大、小信号的影响大致相同,即改善了小信号时的量化信噪比。实际中,非均匀量化的实际方法通常是将抽样值通过压缩再进行均匀量化。通常使用的压缩器中,大多采用对数式压缩。广泛采用的两种对数压缩律是压缩律和A压缩律。美国采用压缩律,我国和欧洲各国均采用A压缩律,因此,PCM编码方式采用的也是A压缩律。所谓A压缩律也就是压缩器具有如下特性的压缩律:A律压扩特性是连续曲线,A值不同压扩特性亦不同,在电路上实现这样的函数规律是相当复杂的。实际中,往往都采用近似于A律函数规律的13折线(A=87.6)的压扩特性。这样,它基本上保持了连续压扩特性曲线的优点,又便于用数字电路实现,本设计中所用到的PCM编码正是采用这种压扩特性来进行编码的。图3示出了这种压扩特性。未压缩(1)(2)(3)(4)(5)(6)(7)(8) 0图1-3为13折线特性表1-1列出了13折线时的值与计算值的比较。表 1-10101按折线分段时的01段落12345678斜率16168421表1中第二行的值是根据时计算得到的,第三行的值是13折线分段时的值。可见,13折线各段落的分界点与曲线十分逼近,同时按2的幂次分割有利于数字化。3.3、编码所谓编码就是把量化后的信号变换成代码,其相反的过程称为译码。当然,这里的编码和译码与差错控制编码和译码是完全不同的,前者是属于信源编码的范畴。在现有的编码方法中,若按编码的速度来分,大致可分为两大类:低速编码和高速编码。通信中一般都采用第二类。编码器的种类大体上可以归结为三类:逐次比较型、折叠级联型、混合型。在逐次比较型编码方式中,无论采用几位码,一般均按极性码、段落码、段内码的顺序排列。下面结合13折线的量化来加以说明。在13折线法中,无论输入信号是正是负,均按8段折线(8个段落)进行编码。若用8位折叠二进制码来表示输入信号的抽样量化值,其中用第一位表示量化值的极性,其余七位(第二位至第八位)则表示抽样量化值的绝对大小。具体的做法是:用第二至第四位表示段落码,它的8种可能状态来分别代表8个段落的起点电平。其它四位表示段内码,它的16种可能状态来分别代表每一段落的16个均匀划分的量化级。这样处理的结果,8个段落被划分成27128个量化级。段落码和8个段落之间的关系如表1-2所示;段内码与16个量化级之间的关系见表1-3。表1-2段落码 表1-3段内码段落序号段落码量化级段内码81111511111411107110131101121100610111101110101051009100181000401170111601103010501014010020013001120010100010001000003.4、设计与仿真下图为simulink搭建的PCM编码器框图:图1-4所示测试模型和仿真结果如图所示,其中以Saturation作为限幅器,将输入信号幅度值限制在PCM编码的定义范围内,Relay模块的门限设置为0,其输出既可作为PCM编码出去的最高位极性码。阳值取绝对值后,以Look-Up Table模块进行13折线压缩,并用增益模块将样值范围放大到0127,然后用间距为1的Quantizer进行四舍五入的取整,最后将整数编码为7位二进制序列,作为PCM编码的低7位。4、心得体会 本次课程设计在刚开始的过程中无从下手,手忙脚乱,时间又紧,最终决定用软件仿真来实现PCM的编码过程。通过这次设计,掌握了PCM编码的工作原理及PCM系统的工作过程,学会了使用matlab(通信系统的动态仿真软件),并学会通过应用软件仿真来实现各种通信系统的设计,对以后的学习和工作都起到了一定的作用,加强了动手能力和学业技能。总体来说,这次实习我受益匪浅。在摸索该如何设计电路使之实现所需功能的过程中,特别有趣,培养了我的设计思维,增加了实际操作能力。在让我体会到了设计电路的艰辛的同时,更让我体会到成功的喜悦和快乐。5、参考文献1 吴伟陵,续大我,庞沁华通信原理北京邮电大学出版社,2005.2 达新宇. 通信原理实验与课程设计. 北京邮电大学出版社,2005.3 曹志刚,钱亚生. 现代通信原理清华大学出版社,1992.4 苗长云等主编. 现代通信原理及应用电子工业出版社,2005
展开阅读全文
相关资源
相关搜索

最新文档


当前位置:首页 > 机械制造 > 工业自动化


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!