经典kalman滤波PPT

上传人:每**** 文档编号:161612911 上传时间:2022-10-14 格式:PPT 页数:23 大小:134KB
返回 下载 相关 举报
经典kalman滤波PPT_第1页
第1页 / 共23页
经典kalman滤波PPT_第2页
第2页 / 共23页
经典kalman滤波PPT_第3页
第3页 / 共23页
点击查看更多>>
资源描述
2021/3/101Introduction to Kalman FiltersMichael Williams5 June 20032021/3/102Overview The Problem Why do we need Kalman Filters?What is a Kalman Filter?Conceptual Overview The Theory of Kalman Filter Simple Example2021/3/103The Problem System state cannot be measured directly Need to estimate“optimally”from measurementsMeasuring DevicesEstimatorMeasurementError SourcesSystem State(desired but not known)External ControlsObserved MeasurementsOptimal Estimate of System StateSystemError SourcesSystemBlack Box2021/3/104What is a Kalman Filter?Recursive data processing algorithm Generates optimal estimate of desired quantities given the set of measurements Optimal?For linear system and white Gaussian errors,Kalman filter is“best”estimate based on all previous measurements For non-linear system optimality is qualified Recursive?Doesnt need to store all previous measurements and reprocess all data each time step2021/3/105Conceptual Overview Simple example to motivate the workings of the Kalman Filter Theoretical Justification to come later for now just focus on the concept Important:Prediction and Correction2021/3/106Conceptual Overview Lost on the 1-dimensional line Position y(t)Assume Gaussian distributed measurementsy2021/3/107Conceptual Overview010203040506070809010000.020.040.060.080.10.120.140.16Sextant Measurement at t1:Mean=z1 and Variance=z1Optimal estimate of position is:(t1)=z1Variance of error in estimate:2x(t1)=2z1Boat in same position at time t2-Predicted position is z12021/3/108010203040506070809010000.020.040.060.080.10.120.140.16Conceptual OverviewSo we have the prediction-(t2)GPS Measurement at t2:Mean=z2 and Variance=z2Need to correct the prediction due to measurement to get(t2)Closer to more trusted measurement linear interpolation?prediction-(t2)measurement z(t2)2021/3/109010203040506070809010000.020.040.060.080.10.120.140.16Conceptual OverviewCorrected mean is the new optimal estimate of positionNew variance is smaller than either of the previous two variancesmeasurement z(t2)corrected optimal estimate(t2)prediction-(t2)2021/3/1010Conceptual Overview Lessons so far:Make prediction based on previous data-,-Take measurement zk,zOptimal estimate()=Prediction+(Kalman Gain)*(Measurement-Prediction)Variance of estimate=Variance of prediction*(1 Kalman Gain)2021/3/1011010203040506070809010000.020.040.060.080.10.120.140.16Conceptual OverviewAt time t3,boat moves with velocity dy/dt=uNave approach:Shift probability to the right to predictThis would work if we knew the velocity exactly(perfect model)(t2)Nave Prediction-(t3)2021/3/1012010203040506070809010000.020.040.060.080.10.120.140.16Conceptual OverviewBetter to assume imperfect model by adding Gaussian noisedy/dt=u+wDistribution for prediction moves and spreads out(t2)Nave Prediction-(t3)Prediction-(t3)2021/3/1013010203040506070809010000.020.040.060.080.10.120.140.16Conceptual OverviewNow we take a measurement at t3Need to once again correct the predictionSame as beforePrediction-(t3)Measurement z(t3)Corrected optimal estimate(t3)2021/3/1014Conceptual Overview Lessons learnt from conceptual overview:Initial conditions(k-1 and k-1)Prediction(-k,-k)Use initial conditions and model(eg.constant velocity)to make prediction Measurement(zk)Take measurement Correction(k,k)Use measurement to correct prediction by blending prediction and residual always a case of merging only two Gaussians Optimal estimate with smaller variance2021/3/1015Theoretical Basis Process to be estimated:yk=Ayk-1+Buk+wk-1zk=Hyk+vkProcess Noise(w)with covariance QMeasurement Noise(v)with covariance R Kalman FilterPredicted:-k is estimate based on measurements at previous time-stepsk=-k+K(zk-H-k)Corrected:k has additional information the measurement at time kK=P-kHT(HP-kHT+R)-1-k=Ayk-1+BukP-k=APk-1AT+QPk=(I-KH)P-k2021/3/1016Blending Factor If we are sure about measurements:Measurement error covariance(R)decreases to zero K decreases and weights residual more heavily than prediction If we are sure about prediction Prediction error covariance P-k decreases to zero K increases and weights prediction more heavily than residual2021/3/1017Theoretical Basis-k=Ayk-1+BukP-k=APk-1AT+QPrediction(Time Update)(1)Project the state ahead(2)Project the error covariance aheadCorrection(Measurement Update)(1)Compute the Kalman Gain(2)Update estimate with measurement zk(3)Update Error Covariancek=-k+K(zk-H-k)K=P-kHT(HP-kHT+R)-1Pk=(I-KH)P-k2021/3/1018Quick Example Constant ModelMeasuring DevicesEstimatorMeasurementError SourcesSystem StateExternal ControlsObserved MeasurementsOptimal Estimate of System StateSystemError SourcesSystemBlack Box2021/3/1019Quick Example Constant ModelPredictionk=-k+K(zk-H-k)CorrectionK=P-k(P-k+R)-1-k=yk-1P-k=Pk-1Pk=(I-K)P-k2021/3/1020Quick Example Constant Model0102030405060708090100-0.7-0.6-0.5-0.4-0.3-0.2-0.102021/3/1021Quick Example Constant Model010203040506070809010000.10.20.30.40.50.60.70.80.91Convergence of Error Covariance-Pk2021/3/10220102030405060708090100-0.7-0.6-0.5-0.4-0.3-0.2-0.10Quick Example Constant ModelLarger value of R the measurement error covariance(indicates poorer quality of measurements)Filter slower to believe measurements slower convergence2021/3/1023ReferencesKalman,R.E.1960.“A New Approach to Linear Filtering and Prediction Problems”,Transaction of the ASME-Journal of Basic Engineering,pp.35-45(March 1960).Maybeck,P.S.1979.“Stochastic Models,Estimation,and Control,Volume 1”,Academic Press,Inc.Welch,G and Bishop,G.2001.“An introduction to the Kalman Filter”,http:/www.cs.unc.edu/welch/kalman/
展开阅读全文
相关资源
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 成人自考


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!