2016临沂市中考数学试卷

上传人:jun****875 文档编号:14299721 上传时间:2020-07-19 格式:DOC 页数:25 大小:464KB
返回 下载 相关 举报
2016临沂市中考数学试卷_第1页
第1页 / 共25页
2016临沂市中考数学试卷_第2页
第2页 / 共25页
2016临沂市中考数学试卷_第3页
第3页 / 共25页
点击查看更多>>
资源描述
2016年山东省临沂市中考数学试卷一、(共14小题,每小题3分,满分42分)在每小题给出的四个选项中,只有一个是符合题目要求的.1(3分)(2016临沂)四个数3,0,1,2,其中负数是()A3B0C1D22(3分)(2016临沂)如图,直线ABCD,A=40,D=45,则1的度数是()A80B85C90D953(3分)(2016临沂)下列计算正确的是()Ax3x2=xBx3x2=x6Cx3x2=xD(x3)2=x54(3分)(2016临沂)不等式组的解集,在数轴上表示正确的是()ABCD5(3分)(2016临沂)如图,一个空心圆柱体,其主视图正确的是()ABCD6(3分)(2016临沂)某校九年级共有1、2、3、4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是()ABCD7(3分)(2016临沂)一个正多边形的内角和为540,则这个正多边形的每一个外角等于()A108B90C72D608(3分)(2016临沂)为了绿化校园,30名学生共种78棵树苗其中男生每人种3棵,女生每人种2棵,该班男生有x人,女生有y人根据题意,所列方程组正确的是()ABCD9(3分)(2016临沂)某老师为了解学生周末学习时间的情况,在所任班级中随机调查了10名学生,绘成如图所示的条形统计图,则这10名学生周末学习的平均时间是()A4B3C2D110(3分)(2016临沂)如图,AB是O的切线,B为切点,AC经过点O,与O分别相交于点D,C若ACB=30,AB=,则阴影部分的面积是()ABCD11(3分)(2016临沂)用大小相等的小正方形按一定规律拼成下列图形,则第n个图形中小正方形的个数是()A2n+1Bn21Cn2+2nD5n212(3分)(2016临沂)如图,将等边ABC绕点C顺时针旋转120得到EDC,连接AD,BD则下列结论:AC=AD;BDAC;四边形ACED是菱形其中正确的个数是()A0B1C2D313(3分)(2016临沂)二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:x543210y402204下列说法正确的是()A抛物线的开口向下B当x3时,y随x的增大而增大C二次函数的最小值是2D抛物线的对称轴是x=14(3分)(2016临沂)如图,直线y=x+5与双曲线y=(x0)相交于A,B两点,与x轴相交于C点,BOC的面积是若将直线y=x+5向下平移1个单位,则所得直线与双曲线y=(x0)的交点有()A0个B1个C2个D0个,或1个,或2个二、填空题(共5小题,每小题3分,满分15分)15(3分)(2016临沂)分解因式:x32x2+x=16(3分)(2016临沂)化简=17(3分)(2016临沂)如图,在ABC中,点D,E,F分别在AB,AC,BC上,DEBC,EFAB若AB=8,BD=3,BF=4,则FC的长为18(3分)(2016临沂)如图,将一矩形纸片ABCD折叠,使两个顶点A,C重合,折痕为FG若AB=4,BC=8,则ABF的面积为19(3分)(2016临沂)一般地,当、为任意角时,sin(+)与sin()的值可以用下面的公式求得:sin(+)=sincos+cossin;sin()=sincoscossin例如sin90=sin(60+30)=sin60cos30+cos60sin30=+=1类似地,可以求得sin15的值是三、解答题(共7小题,满分63分)20(7分)(2016临沂)计算:|3|+tan30(2016)021(7分)(2016临沂)为了解某校九年级学生的身高情况,随机抽取部分学生的身高进行调查,利用所得数据绘成如图统计图表: 频数分布表身高分组频数百分比x155510%155x160a20%160x1651530%165x17014bx170612%总计100%(1)填空:a=,b=;(2)补全频数分布直方图;(3)该校九年级共有600名学生,估计身高不低于165cm的学生大约有多少人?22(7分)(2016临沂)一艘轮船位于灯塔P南偏西60方向,距离灯塔20海里的A处,它向东航行多少海里到达灯塔P南偏西45方向上的B处(参考数据:1.732,结果精确到0.1)?23(9分)(2016临沂)如图,A,P,B,C是圆上的四个点,APC=CPB=60,AP,CB的延长线相交于点D(1)求证:ABC是等边三角形;(2)若PAC=90,AB=2,求PD的长24(9分)(2016临沂)现代互联网技术的广泛应用,催生了快递行业的高速发展小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费乙公司表示:按每千克16元收费,另加包装费3元设小明快递物品x千克(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?25(11分)(2016临沂)如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF连接DE,过点E作EGDE,使EG=DE,连接FG,FC(1)请判断:FG与CE的数量关系是,位置关系是;(2)如图2,若点E,F分别是边CB,BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;(3)如图3,若点E,F分别是边BC,AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断26(13分)(2016临沂)如图,在平面直角坐标系中,直线y=2x+10与x轴,y轴相交于A,B两点,点C的坐标是(8,4),连接AC,BC(1)求过O,A,C三点的抛物线的解析式,并判断ABC的形状;(2)动点P从点O出发,沿OB以每秒2个单位长度的速度向点B运动;同时,动点Q从点B出发,沿BC以每秒1个单位长度的速度向点C运动规定其中一个动点到达端点时,另一个动点也随之停止运动设运动时间为t秒,当t为何值时,PA=QA?(3)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由2016年山东省临沂市中考数学试卷参考答案与试题解析一、(共14小题,每小题3分,满分42分)在每小题给出的四个选项中,只有一个是符合题目要求的.1(3分)(2016临沂)四个数3,0,1,2,其中负数是()A3B0C1D2【分析】3小于零,是负数,0既不是正数正数也不是负数,1和2是正数【解答】解:30,且小于零的数为负数,3为负数故选:A2(3分)(2016临沂)如图,直线ABCD,A=40,D=45,则1的度数是()A80B85C90D95【分析】根据1=D+C,D是已知的,只要求出C即可解决问题【解答】解:ABCD,A=C=40,1=D+C,D=45,1=D+C=45+40=85,故选B3(3分)(2016临沂)下列计算正确的是()Ax3x2=xBx3x2=x6Cx3x2=xD(x3)2=x5【分析】直接利用同底数幂的乘除法运算法则以及结合幂的乘方运算法则分别化简求出答案【解答】解:A、x3x2,无法计算,故此选项错误;B、x3x2=x5,故此选项错误;C、x3x2=x,正确;D、(x3)2=x5,故此选项错误;故选:C4(3分)(2016临沂)不等式组的解集,在数轴上表示正确的是()ABCD【分析】解出不等式组的解集,即可得到哪个选项是正确的,本题得以解决【解答】解:由,得x4,由,得x3,由得,原不等式组的解集是x3;故选A5(3分)(2016临沂)如图,一个空心圆柱体,其主视图正确的是()ABCD【分析】找到从前面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中【解答】解:从前面观察物体可以发现:它的主视图应为矩形,又因为该几何体为空心圆柱体,故中间的两条棱在主视图中应为虚线,故选:B6(3分)(2016临沂)某校九年级共有1、2、3、4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是()ABCD【分析】画树状图展示所有12种等可能的结果数,再找出恰好抽到1班和2班的结果数,然后根据概率公式求解【解答】解:画树状图为:共有12种等可能的结果数,其中恰好抽到1班和2班的结果数为2,所以恰好抽到1班和2班的概率=故选B7(3分)(2016临沂)一个正多边形的内角和为540,则这个正多边形的每一个外角等于()A108B90C72D60【分析】首先设此多边形为n边形,根据题意得:180(n2)=540,即可求得n=5,再由多边形的外角和等于360,即可求得答案【解答】解:设此多边形为n边形,根据题意得:180(n2)=540,解得:n=5,故这个正多边形的每一个外角等于:=72故选C8(3分)(2016临沂)为了绿化校园,30名学生共种78棵树苗其中男生每人种3棵,女生每人种2棵,该班男生有x人,女生有y人根据题意,所列方程组正确的是()ABCD【分析】根据题意可得等量关系:男生人数+女生人数=30;男生种树的总棵树+女生种树的总棵树=78棵,根据等量关系列出方程组即可【解答】解:该班男生有x人,女生有y人根据题意得:,故选:D9(3分)(2016临沂)某老师为了解学生周末学习时间的情况,在所任班级中随机调查了10名学生,绘成如图所示的条形统计图,则这10名学生周末学习的平均时间是()A4B3C2D1【分析】平均数的计算方法是求出所有数据的和,然后除以数据的总个数本题利用加权平均数的公式即可求解【解答】解:根据题意得:(11+22+43+24+15)10=3(小时),答:这10名学生周末学习的平均时间是3小时;故选B10(3分)(2016临沂)如图,AB是O的切线,B为切点,AC经过点O,与O分别相交于点D,C若ACB=30,AB=,则阴影部分的面积是()ABCD【分析】首先求出AOB,OB,然后利用S阴=SABOS扇形OBD计算即可【解答】解:连接OBAB是O切线,OBAB,OC=OB,C=30,C=OBC=30,AOB=C+OBC=60,在RTABO中,ABO=90,AB=,A=30,OB=1,S阴=SABOS扇形OBD=1=故选C11(3分)(2016临沂)用大小相等的小正方形按一定规律拼成下列图形,则第n个图形中小正方形的个数是()A2n+1Bn21Cn2+2nD5n2【分析】由第1个图形中小正方形的个数是221、第2个图形中小正方形的个数是321、第3个图形中小正方形的个数是421,可知第n个图形中小正方形的个数是(n+1)21,化简可得答案【解答】解:第1个图形中,小正方形的个数是:221=3;第2个图形中,小正方形的个数是:321=8;第3个图形中,小正方形的个数是:421=15;第n个图形中,小正方形的个数是:(n+1)21=n2+2n+11=n2+2n;故选:C12(3分)(2016临沂)如图,将等边ABC绕点C顺时针旋转120得到EDC,连接AD,BD则下列结论:AC=AD;BDAC;四边形ACED是菱形其中正确的个数是()A0B1C2D3【分析】根据旋转和等边三角形的性质得出ACE=120,DCE=BCA=60,AC=CD=DE=CE,求出ACD是等边三角形,求出AD=AC,根据菱形的判定得出四边形ABCD和ACED都是菱形,根据菱形的判定推出ACBD【解答】解:将等边ABC绕点C顺时针旋转120得到EDC,ACE=120,DCE=BCA=60,AC=CD=DE=CE,ACD=12060=60,ACD是等边三角形,AC=AD,AC=AD=DE=CE,四边形ACED是菱形,将等边ABC绕点C顺时针旋转120得到EDC,AC=AD,AB=BC=CD=AD,四边形ABCD是菱形,BDAC,都正确,故选D13(3分)(2016临沂)二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:x543210y402204下列说法正确的是()A抛物线的开口向下B当x3时,y随x的增大而增大C二次函数的最小值是2D抛物线的对称轴是x=【分析】选出3点的坐标,利用待定系数法求出函数的解析式,再根据二次函数的性质逐项分析四个选项即可得出结论【解答】解:将点(4,0)、(1,0)、(0,4)代入到二次函数y=ax2+bx+c中,得:,解得:,二次函数的解析式为y=x2+5x+4A、a=10,抛物线开口向上,A不正确;B、=,当x时,y随x的增大而增大,B不正确;C、y=x2+5x+4=,二次函数的最小值是,C不正确;D、=,抛物线的对称轴是x=,D正确故选D14(3分)(2016临沂)如图,直线y=x+5与双曲线y=(x0)相交于A,B两点,与x轴相交于C点,BOC的面积是若将直线y=x+5向下平移1个单位,则所得直线与双曲线y=(x0)的交点有()A0个B1个C2个D0个,或1个,或2个【分析】令直线y=x+5与y轴的交点为点D,过点O作OE直线AC于点E,过点B作BFx轴于点F,通过令直线y=x+5中x、y分别等于0,得出线段OD、OC的长度,根据正切的值即可得出DCO=45,再结合做的两个垂直,可得出OEC与BFC都是等腰直角三角形,根据等腰直角三角形的性质结合面积公式即可得出线段BC的长,从而可得出BF、CF的长,根据线段间的关系可得出点B的坐标,根据反比例函数图象上点的坐标特征即可得出反比例函数系数k的值,根据平移的性质找出平移后的直线的解析式将其代入反比例函数解析式中,整理后根据根的判别式的正负即可得出结论【解答】解:令直线y=x+5与y轴的交点为点D,过点O作OE直线AC于点E,过点B作BFx轴于点F,如图所示令直线y=x+5中x=0,则y=5,即OD=5;令直线y=x+5中y=0,则0=x+5,解得:x=5,即OC=5在RtCOD中,COD=90,OD=OC=5,tanDCO=1,DCO=45OEAC,BFx轴,DCO=45,OEC与BFC都是等腰直角三角形,又OC=5,OE=SBOC=BCOE=BC=,BC=,BF=FC=BC=1,OF=OCFC=51=4,BF=1,点B的坐标为(4,1),k=41=4,即双曲线解析式为y=将直线y=x+5向下平移1个单位得到的直线的解析式为y=x+51=x+4,将y=x+4代入到y=中,得:x+4=,整理得:x24x+4=0,=(4)244=0,平移后的直线与双曲线y=只有一个交点故选B二、填空题(共5小题,每小题3分,满分15分)15(3分)(2016常州)分解因式:x32x2+x=x(x1)2【分析】首先提取公因式x,进而利用完全平方公式分解因式即可【解答】解:x32x2+x=x(x22x+1)=x(x1)2故答案为:x(x1)216(3分)(2016临沂)化简=a+1【分析】首先把两个分式的分母变为相同再计算【解答】解:原式=a+1故答案为:a+117(3分)(2016临沂)如图,在ABC中,点D,E,F分别在AB,AC,BC上,DEBC,EFAB若AB=8,BD=3,BF=4,则FC的长为【分析】直接利用平行线分线段成比例定理得出=,进而求出答案【解答】解:DEBC,EFAB,=,AB=8,BD=3,BF=4,=,解得:FC=故答案为:18(3分)(2016临沂)如图,将一矩形纸片ABCD折叠,使两个顶点A,C重合,折痕为FG若AB=4,BC=8,则ABF的面积为6【分析】根据折叠的性质求出AF=CF,根据勾股定理得出关于CF的方程,求出CF,求出BF,根据面积公式求出即可【解答】解:将一矩形纸片ABCD折叠,使两个顶点A,C重合,折痕为FG,FG是AC的垂直平分线,AF=CF,设AF=FC=x,在RtABF中,有勾股定理得:AB2+BF2=AF2,42+(8x)2=x2,解得:x=5,即CF=5,BF=85=3,ABF的面积为34=6,故答案为:619(3分)(2016临沂)一般地,当、为任意角时,sin(+)与sin()的值可以用下面的公式求得:sin(+)=sincos+cossin;sin()=sincoscossin例如sin90=sin(60+30)=sin60cos30+cos60sin30=+=1类似地,可以求得sin15的值是【分析】把15化为6045,则可利用sin()=sincoscossin和特殊角的三角函数值计算出sin15的值【解答】解:sin15=sin(6045)=sin60cos45cos60sin45=故答案为三、解答题(共7小题,满分63分)20(7分)(2016临沂)计算:|3|+tan30(2016)0【分析】原式利用绝对值的代数意义,特殊角的三角函数值,二次根式性质,以及零指数幂法则计算即可得到结果【解答】解:原式=3+21=3221(7分)(2016临沂)为了解某校九年级学生的身高情况,随机抽取部分学生的身高进行调查,利用所得数据绘成如图统计图表: 频数分布表身高分组频数百分比x155510%155x160a20%160x1651530%165x17014bx170612%总计100%(1)填空:a=10,b=28%;(2)补全频数分布直方图;(3)该校九年级共有600名学生,估计身高不低于165cm的学生大约有多少人?【分析】(1)根据表格中的数据可以求得调查的学生总数,从而可以求得a的值,进而求得b的值;(2)根据(1)中的a的值可以补全频数分布直方图;(3)根据表格中的数据可以估算出该校九年级身高不低于165cm的学生大约有多少人【解答】解:(1)由表格可得,调查的总人数为:510%=50,a=5020%=10,b=1450100%=28%,故答案为:10,28%;(2)补全的频数分布直方图如下图所示,(3)600(28%+12%)=60040%=240(人)即该校九年级共有600名学生,身高不低于165cm的学生大约有240人22(7分)(2016临沂)一艘轮船位于灯塔P南偏西60方向,距离灯塔20海里的A处,它向东航行多少海里到达灯塔P南偏西45方向上的B处(参考数据:1.732,结果精确到0.1)?【分析】利用题意得到ACPC,APC=60,BPC=45,AP=20,如图,在RtAPC中,利用余弦的定义计算出PC=10,利用勾股定理计算出AC=10,再判断PBC为等腰直角三角形得到BC=PC=10,然后计算ACBC即可【解答】解:如图,ACPC,APC=60,BPC=45,AP=20,在RtAPC中,cosAPC=,PC=20cos60=10,AC=10,在PBC中,BPC=45,PBC为等腰直角三角形,BC=PC=10,AB=ACBC=10107.3(海里)答:它向东航行约7.3海里到达灯塔P南偏西45方向上的B处23(9分)(2016临沂)如图,A,P,B,C是圆上的四个点,APC=CPB=60,AP,CB的延长线相交于点D(1)求证:ABC是等边三角形;(2)若PAC=90,AB=2,求PD的长【分析】(1)由圆周角定理可知ABC=BAC=60,从而可证得ABC是等边三角形;(2)由ABC是等边三角形可得出“AC=BC=AB=2,ACB=60”,在直角三角形PAC和DAC通过特殊角的正、余切值即可求出线段AP、AD的长度,二者作差即可得出结论【解答】(1)证明:ABC=APC,BAC=BPC,APC=CPB=60,ABC=BAC=60,ABC是等边三角形(2)解:ABC是等边三角形,AB=2,AC=BC=AB=2,ACB=60在RtPAC中,PAC=90,APC=60,AC=2,AP=2在RtDAC中,DAC=90,AC=2,ACD=60,AD=ACtanACD=6PD=ADAP=62=424(9分)(2016临沂)现代互联网技术的广泛应用,催生了快递行业的高速发展小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费乙公司表示:按每千克16元收费,另加包装费3元设小明快递物品x千克(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?【分析】(1)根据“甲公司的费用=起步价+超出重量续重单价”可得出y甲关于x的函数关系式,根据“乙公司的费用=快件重量单价+包装费用”即可得出y乙关于x的函数关系式;(2)分0x1和x1两种情况讨论,分别令y甲y乙、y甲=y乙和y甲y乙,解关于x的方程或不等式即可得出结论【解答】解:(1)由题意知:当0x1时,y甲=22x;当1x时,y甲=22+15(x1)=15x+7y乙=16x+3(2)当0x1时,令y甲y乙,即22x16x+3,解得:0x;令y甲=y乙,即22x=16x+3,解得:x=;令y甲y乙,即22x16x+3,解得:x1x1时,令y甲y乙,即15x+716x+3,解得:x4;令y甲=y乙,即15x+7=16x+3,解得:x=4;令y甲y乙,即15x+716x+3,解得:0x4综上可知:当x4时,选乙快递公司省钱;当x=4或x=时,选甲、乙两家快递公司快递费一样多;当0x或x4时,选甲快递公司省钱25(11分)(2016临沂)如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF连接DE,过点E作EGDE,使EG=DE,连接FG,FC(1)请判断:FG与CE的数量关系是FG=CE,位置关系是FGCE;(2)如图2,若点E,F分别是边CB,BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;(3)如图3,若点E,F分别是边BC,AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断【分析】(1)只要证明四边形CDGF是平行四边形即可得出FG=CE,FGCE;(2)构造辅助线后证明HGECED,利用对应边相等求证四边形GHBF是矩形后,利用等量代换即可求出FG=C,FGCE;(3)证明CBFDCE后,即可证明四边形CEGF是平行四边形【解答】解:(1)FG=CE,FGCE;(2)过点G作GHCB的延长线于点H,EGDE,GEH+DEC=90,GEH+HGE=90,DEC=HGE,在HGE与CED中,HGECED(AAS),GH=CE,HE=CD,CE=BF,GH=BF,GHBF,四边形GHBF是矩形,GF=BH,FGCHFGCE四边形ABCD是正方形,CD=BC,HE=BCHE+EB=BC+EBBH=ECFG=EC(3)成立四边形ABCD是正方形,BC=CD,FBC=ECD=90,在CBF与DCE中,CBFDCE(SAS),BCF=CDE,CF=DE,EG=DE,CF=EG,DEEGDEC+CEG=90CDE+DEC=90CDE=CEG,BCF=CEG,CFEG,四边形CEGF平行四边形,FGCE,FG=CE26(13分)(2016临沂)如图,在平面直角坐标系中,直线y=2x+10与x轴,y轴相交于A,B两点,点C的坐标是(8,4),连接AC,BC(1)求过O,A,C三点的抛物线的解析式,并判断ABC的形状;(2)动点P从点O出发,沿OB以每秒2个单位长度的速度向点B运动;同时,动点Q从点B出发,沿BC以每秒1个单位长度的速度向点C运动规定其中一个动点到达端点时,另一个动点也随之停止运动设运动时间为t秒,当t为何值时,PA=QA?(3)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由【分析】(1)先确定出点A,B坐标,再用待定系数法求出抛物线解析式;用勾股定理逆定理判断出ABC是直角三角形;(2)根据运动表示出OP=2t,CQ=10t,判断出RtAOPRtACQ,得到OP=CQ即可;(3)分三种情况用平面坐标系内,两点间的距离公式计算即可,【解答】解:(1)直线y=2x+10与x轴,y轴相交于A,B两点,A(5,0),B(0,10),抛物线过原点,设抛物线解析式为y=ax2+bx,抛物线过点B(0,10),C(8,4),抛物线解析式为y=x2x,A(5,0),B(0,10),C(8,4),AB2=52+102=125,BC2=82+(104)2=100,AC2=42+(85)2=25,AC2+BC2=AB2,ABC是直角三角形(2)如图1,当P,Q运动t秒,即OP=2t,CQ=10t时,由(1)得,AC=OA,ACQ=AOP=90,在RtAOP和RtACQ中,RtAOPRtACQ,OP=CQ,2t=10t,t=,当运动时间为时,PA=QA;(3)存在,y=x2x,抛物线的对称轴为x=,A(5,0),B(0,10),AB=5设点M(,m),若BM=BA时,()2+(m10)2=125,m1=,m2=,M1(,),M2(,),若AM=AB时,()2+m2=125,m3=,m4=,M3(,),M4(,),若MA=MB时,(5)2+m2=()2+(10m)2,m=5,M(,5),此时点M恰好是线段AB的中点,构不成三角形,舍去,点M的坐标为:M1(,),M2(,),M3(,),M4(,),参与本试卷答题和审题的老师有:妮子;弯弯的小河;sd2011;zgm666;三界无我;gsls;王学峰;lantin;zjx111;曹先生;gbl210;马兴田;sks;神龙杉;星月相随(排名不分先后)菁优网2016年8月27日
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 中学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!