资源描述
计数原理加法原理1. 从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船。一天中火车有4班,汽车有3班,轮船有2班。问:一天中乘坐这些交通工具从甲地到乙地,共有多少种不同走法?2. 旗杆上最多可以挂两面信号旗,现有红色、蓝色和黄色的信号旗各一面,如果用挂信号旗表示信号,最多能表示出多少种不同的信号?3. 如右图,从甲地到乙地有三条路,从乙地到丙地有三条路,从甲地到丁地有两条路,从丁地到丙地有四条路,问:从甲地到丙地共有多少种走法? 4. 小明全家五口人到郊外春游,由其中一人轮换给其他人拍照.如果单人照各一张,每两个人合影各一张,第三个人合影各一张,每四个人合影各一张,用36张的彩色胶卷拍照最后还剩 张.5.光明小学六年级甲、乙、丙三个班组织了一次文艺晚会,共演出14个节目.如果每个班至少演出3个节目,那么,这三个班演出节目数的不同情况共有 种.乘法原理1. 两次掷一枚骰子,两次出现的数字之和为偶数的情况有多少种?2. 用五种颜色给右图的五个区域染色,每个区域染一种颜色,相邻的区域染不同的颜色。问:共有多少种不同的染色方法?3. 右图中每个小方格的边长都是1。一只小虫从直线AB上的O点出发,沿着横线与竖线爬行,可上可下,可左可右,但最后仍要回到AB上(不一定回到O点)。如果小虫爬行的总长是3,那么小虫有多少条不同的爬行路线?4. 某罪犯要从甲地途经乙地和丙地逃到丁地,现在知道从甲地到乙地有3条路可以走,从乙地到丙地有2条路可以走,从丙地到丁地有4条路可以走问,罪犯共有多少种逃走的方法?5. 某市的电话号码是六位数的,首位不能是0,其余各位数上可以是09中的任何一个,并且不同位上的数字可以重复那么,这个城市最多可容纳多少部电话机?抽屉原理1. 在一个口袋里有10个黑球,6个白球,4个红球,至少取出几个球才能保证其中有白球?( )3. 新年晚会上,老师让每位同学从一个装有许多玻璃球的口袋中摸2个球,这些球给人的手感相同,只有红、黄、白、蓝、绿之分,结果发现总有2个人取的球颜色相同。由此可知,参加取球的至少有多少人?4. 有规格尺寸相同的5种颜色的袜子各15只混装在箱内,试问不论如何取,从箱中至少取出多少只就能保证有3双袜子(袜子无左、右之分)?5. 一个布袋中有35个同样大小的木球,其中白、黄、红三种颜色球各有10个,另外还有3个蓝色球、2个绿色球,试问一次至少取出多少个球,才能保证取出的球中至少有4个是同一颜色的球?6. 五年级有47名学生参加一次数学竞赛,成绩都是整数,满分是100分。已知3名学生的成绩在60分以下,其余学生的成绩均在7595分之间。问:至少有几名学生的成绩相同?7. 把125本书分给五(2)班学生,如果其中至少有1人分到至少4本书,那么,这个班最多有多少人?8. 五(1)班张老师在一次数学课上出了两道题,规定每道题做对得2分,没做得1分,做错得0分。张老师说:可以肯定全班同学中至少有6名学生各题的得分都相同。那么,这个班最少有多少人?容斥原理1. 某班共有 46人,参加美术小组的有 12人,参加音乐小组的有 23人,有5人两个小组都参加了。这个班既没参加美术小组也没参加音乐小组的有多少人?2. 在多元智能大赛的决赛中只有三道题.已知:(1)某校25名学生参加竞赛,每个学生至少解出一道题;(2)在所有没有解出第一题的学生中,解出第二题的人数是解出第三题的人数的2倍:(3)只解出第一题的学生比余下的学生中解出第一题的人数多1人;(4)只解出一道题的学生中,有一半没有解出第一题,那么只解出第二题的学生人数是( ) 3. 在多元智能大赛的决赛中只有三道题.已知:(1)某校25名学生参加竞赛,每个学生至少解出一道题;(2)在所有没有解出第一题的学生中,解出第二题的人数是解出第三题的人数的2倍:(3)只解出第一题的学生比余下的学生中解出第一题的人数多1人;(4)只解出一道题的学生中,有一半没有解出第一题,那么只解出第二题的学生人数是( ) 4. 一次考试共有5道试题。做对第1、2、3、4、5题的分别占参加考试人数的95%、80%、79%、74%、85%。如果做对三道或三道以上为合格,那么这次考试的合格率至少是多少? 5. 有2000盏灯亮着,各有一根拉线开关,把这些开关编号为1,2,3,4,5,2000,有三位同学,第一位同学把编号为2和2的倍数的开关均拉一下;第二位同学把编号为3和3的倍数的开关均拉一下,第三位同学把编号为5和5的倍数的开关均拉一下。这时,2000盏灯中还有( )盏亮着。6. 一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人?7. 五环图中每一个环内径为4厘米,外径为5厘米.其中两两相交的小曲边四边形(右图中阴影部分)的面积相等.已知五个圆环盖住的总面积是122.5平方厘米.求每个小曲边四边形的面积。8. 某班全体学生进行短跑、游泳和篮球三项测验,有4个学生这三项均未达到优秀,其余每人至少一项达到优秀,这部分学生达到优秀的项目及人数如下表:问这个班有多少名学生?
展开阅读全文