九年级数学下册 第5章 二次函数 5.5 用二次函数解决实际问题(1)学案(无答案)(新版)苏科版

上传人:Sc****h 文档编号:134296939 上传时间:2022-08-12 格式:DOC 页数:6 大小:118KB
返回 下载 相关 举报
九年级数学下册 第5章 二次函数 5.5 用二次函数解决实际问题(1)学案(无答案)(新版)苏科版_第1页
第1页 / 共6页
九年级数学下册 第5章 二次函数 5.5 用二次函数解决实际问题(1)学案(无答案)(新版)苏科版_第2页
第2页 / 共6页
九年级数学下册 第5章 二次函数 5.5 用二次函数解决实际问题(1)学案(无答案)(新版)苏科版_第3页
第3页 / 共6页
点击查看更多>>
资源描述
5.5用二次函数解决问题(1)【利润最值问题】 【学习目标】基本目标:1.体会二次函数是一类最优化问题的数学模型,了解数学的应用价值。2.能运用二次函数的知识求出实际问题的最大(小)值,发展解决问题的能力。提升目标; 准确分析实际问题中的数量关系,建立二次函数模型,并灵活解决之 【重点难点】重 点: 应用二次函数解决实际问题中(利润问题)的最值难 点: 正确理解题意,找准数量关系,解决实际问题中(利润问题)的最值【预习导航】1、(2015江苏淮安)水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤。通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤。为了保证每天至少售出260斤,张阿姨决定降价销售。(1) 若将这种水果每斤的售价降低x元,则每天的销售量是 斤(用含x的代数式表示);(2) 销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?2、某商店经营T恤衫,已知成批购进时单价是2.5元.根据市场调查,销售量与销售单价满足如下关系:在某一时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件. 请你帮助分析:销售单价是多少时,可以获利最多?问题(1)总利润= ,单件利润= 。(2)在这个问题中有那些变量?其中哪些是自变量?哪些是因变量?(3)根据前面的分析我们若设每个涨价x元,总利润为y元,此时y与x之间的函数关系式是 ,化为一般式 。这里y是x的 函数。现在求最大利润,实质就是求此二次函数的最值,你会求吗?试试看。【课堂导学】预习总结:列二次函数解应用题与列整式方程解应用题的思路和方法是一致的,不同的是,学习了二次函数后,表示量与量的关系的代数式是含有两个变量的等式对于应用题要注意以下步骤:(1)审清题意,弄清题中涉及哪些量,已知量有几个,已知量与变量之间的基本关系是什么,找出等量关系(即函数关系)(2)设出两个变量,注意分清自变量和因变量,同时还要注意所设变量的单位要准确(3)列函数表达式,抓住题中含有等量关系的语句,将此语句抽象为含变量的等式,这就是二次函数(4)按题目要求,结合二次函数的性质解答相应的问题。(5)检验所得解是否符合实际:即是否为所提问题的答案(6)写出答案例题:例1、某商场经营一批进价为2元一件的小商品,在市场营销中发现此商品的日销售单价x元与日销售量y件之间有如下关系:(1)已知y是x的一次函数,求销售量y件与日销售单价x元之间的函数表达式;(2)设经营此商品的日销售利润(不考虑其他因素)为P元,根据日销售规律:试求出x35y1814日销售利润P元与日销售单价x元之间的函数表达式,并求出日销售单价x为多少元时,才能获得最大日销售利润?例2、去年鱼塘里饲养鱼苗10千尾,平均每千尾鱼的产量为1000kg今年计划继续向鱼塘里投放鱼苗,预计每多投放鱼苗1千尾,每千尾鱼的产量将减少50kg今年应投放鱼苗多少千尾,才能使总产量最大?最大总产量是多少?【课堂检测】1、某种粮大户去年种植优质水稻360亩,今年计划增加承租x(100x150)亩,预计,原种植的360亩水稻今年每亩可收益440元,新增地今年每亩的收益为(440-2x)元,试问,该种粮大户今年要增加承租多少亩水稻,才能使总收益y最大? 2、某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如果售价为x元,总利润为y元。(1)写出y与x的函数关系式(2)当售价x为多少元时,总利润为y最大,最大值是多少元?课后反思 【课后巩固】一、基础检测1、关于二次函数y=ax2bxc的图象有下列命题:当c=0时,函数的图象经过原点;当c0且函数图象开口向下时,方程ax2bxc=0必有两个不等实根;当a0,函数的图象最高点的纵坐标是;当b=0时,函数的图象关于y轴对称其中正确命题的个数有( )A1个B2个C3个D4个2、某类产品按质量共分为10个档次,生产最低档次产品每件利润为8元,如果每提高一个档次每件利润增加2元用同样的工时,最低档次产品每天可生产60件,每提高一个档次将少生产3件,求生产何种档次的产品利润最大?3、将进货为40元的某种商品按50元一个售出时,能卖出500个已知这时商品每涨价一元,其销售数就要减少20个为了获得最大利益,售价应定为多少?4、(2015江苏南通)某网店打出促销广告:最潮新款服装30件,每件售价300元。若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买1件,所买的每件服装的售价均降低3元。已知该服装成本是每件200元。设顾客一次性购买服装件时,该网店从中获利元。(1)求与的函数关系式,并写出自变量的取值范围;(2)顾客一次性购买多少件时,该网店从中获利最多?5、( 09年济宁市)某体育用品商店购进一批滑板,每件进价为100元,售价为130元,每星期可卖出80件.商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20件.(1)求商家降价前每星期的销售利润为多少元?(2)降价后,商家要使每星期的销售利润最大,应将售价定为多少元?最大销售利润是多少?6、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?(2)每件衬衫降低多少元时,商场平均每天盈利最多?二、拓展延伸7、某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:x(元)152030y(件)252010 若日销售量y是销售价x的一次函数 (1)求出日销售量y(件)与销售价x(元)的函数关系式; (2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?8、(2015江苏南京)某企业生产并销售某种产品,假设销售量与产量相等下图中的折线ABD、线段CD分别表示该产品每千克生产成本y1(单位:元)、销售价y2(单位:元)与产量x(单位:kg)之间的函数关系(1)请解释图中点D的横坐标、纵坐标的实际意义(2)求线段AB所表示的y1与x之间的函数表达式(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?6
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 幼儿教育


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!