资源描述
平方根(1)教学目标:1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性。2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根。教学重点:算术平方根的概念。教学难点:根据算术平方根的概念正确求出非负数的算术平方根。教学过程一、情境导入请同学们欣赏本节导图,并回答问题,学校要举行金秋美术作品比赛,小欧很高兴,他想裁出一块面积为25的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?如果这块画布的面积是?这个问题实际上是已知一个正数的平方,求这个正数的问题?这就要用到平方根的概念,也就是本章的主要学习内容这节课我们先学习有关算术平方根的概念二、导入新课:1、提出问题:(书P68页的问题) 你是怎样算出画框的边长等于5dm的呢?(学生思考并交流解法)这个问题相当于在等式扩=25中求出正数x的值 一般地,如果一个正数x的平方等于a,即=a,那么这个正数x叫做a的算术平方根a的算术平方根记为,读作“根号a”,a叫做被开方数规定:0的算术平方根是0. 也就是,在等式=a (x0)中,规定x =. 2、 试一试:你能根据等式:=144说出144的算术平方根是多少吗?并用等式表示出来 3、 想一想:下列式子表示什么意思?你能求出它们的值吗?建议:求值时,要按照算术平方根的意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值例如表示25的算术平方根。4、例1 求下列各数的算术平方根: (1)100;(2)1;(3);(4)0.0001三、练习P69练习 1、2四、探究:(课本第69页)怎样用两个面积为1的小正方形拼成一个面积为2的大正方形? 方法1:课本中的方法,略; 方法2:可还有其他方法,鼓励学生探究。问题:这个大正方形的边长应该是多少呢?大正方形的边长是,表示2的算术平方根,它到底是个多大的数?你能求出它的值吗?建议学生观察图形感受的大小小正方形的对角线的长是多少呢?(用刻度尺测量它与大正方形的边长的大小)它的近似值我们将在下节课探究五、小结:1、这节课学习了什么呢? 2、算术平方根的具体意义是怎么样的? 3、怎样求一个正数的算术平方根六、课外作业:P75习题13.1活动第1、2、3题平方根(2)教学目标:1、会用计算器求一个数的算术平方根;理解被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律.2、能用夹值法求一个数的算术平方根的近似值.3、体验“无限不循环小数”的含义,感受存在着不同于有理数的一类新数。教学重点:夹值法及估计一个(无理)数的大小。教学难点:夹值法及估计一个(无理)数的大小的思想。教学过程一、情境导入我们已经知道:正数x满足=a,则称x是a的算术平方根当a恰是一个数的平方数时,我们已经能求出它的算术平方根了,例如,=4;但当a不是一个数的平方数时,它的算术平方根又该怎祥求呢?例如课本第161页的大正方形的边长等于多少呢?二、导入新课: 1、 问题:究竟有多大?让学生思考讨论并估计大概有多大.由直观可知招大于1而小于2,那么了是1点几呢?(接下来由试验可得到平方数最接近2的1位小数是1.4,而平方数大于2且最接近的1位小数是1.5,大于1.4而小于1.5.关于是一个“无限不循环小数”要向学生详细说明为无理数的概念的提出打下基础2、(提出问题):你对正数a的算术平方根的结果有怎样的认识呢?的结果有两种情:当a是完全平方数时,是一个有限数;当a不是一个完全平方数时,是一个无限不循环小数。3、 例2 用计算器求下列各式的值: (1)(2)(精确到0.001)注意计算器的用法,指出计算器上显示的也只是近似值,但我们可以利用计算器方便地求出一个正数的算术平方根的近似值例3(课本P71-72)要注意学生是否弄清了题意;然后分析解题思路:能否裁出符合要求的纸片,就是要比较两个图形的边长,而由题意,易知正方形的边长是20 cm,所以只需求出长方形的边长,设长方形的长和宽分别是3xcm和2xcm,求得长方形的长为3cm后,接下来的问题是比较3和20的大小,这是个难点。三、练习:课本P72的练习 1、2四、小结:1、利用计算器可以求出任意正数的算术平方根的近似值.2、被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律是怎样的呢?3、怎样的数是无限不循环小数?五、作业课本:P75-76习题13.1 第5、6、9、10题;平方根(3)教学目标:1、掌握平方根的概念,明确平方根和算术平方根之间的联系和区别.2、能用符号正确地表示一个数的平方根,理解开平方运算和乘方运算之间的互逆关系.教学重点:平方根的概念和求数的平方根。教学难点:平方根和算术平方根的联系与区别教学过程一、情境导入如果一个数的平方等于9,这个数是多少?讨论:这样的数有两个,它们是3和3.注意中括号的作用又如:,则x等于多少呢?二、新课:1、平方根的概念:如果一个数的平方等于a,那么这个数就叫做a的平方根即:如果=a,那么x叫做a的平方根求一个数的平方根的运算,叫做开平方例如:3的平方等于9,9的平方根是3,所以平方与开平方互为逆运算2、观察:课本P73的图13.1-2.图13.1-2中的两个图描述了平方与开平方互为逆运算的运算过程,揭示了开平方运算的本质并根据这个关系说出1,4,9的平方根 例4 求下列各数的平方根。(1) 100 (2) (3) 0.25(注意书写格式)3、按照平方根的概念,请同学们思考并讨论下列问题:正数的平方根有什么特点?0的平方根是多少?负数有平方根吗?一个是正数有两个平方根,即正数进行开平方运算有两个结果,一个是负数没有平方根,即负数不能进行开平方运算,符号:正数a的算术平方根可用表示;正数a的负的平方根可用-表示例5 求下列各式的值。(1), (2), (3) (4),归纳:平方根和算术平方根两者既有区别又有联系区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根。三、练习课本P75 练习1、2、3四、小结:1、什么叫做一个数的平方根?2、正数、0、负数的平方根有什么规律?3、怎样求出一个数的平方根?数a的平方怎样表示?五、作业P75-76习题13.1第3、4、7、8、11、12题。平方根(练习课)教学目的:通过练习,使学生对平方根的知识能灵活地运用并得到巩固。教学重点:灵活地运用平方根的知识解决问题。.教学难点:灵活地运用平方根的知识解决问题。教具准备:小黑板教学过程一、填空题1(-0。7)2的平方根是( )A-0.7 B.0.7 C.0.7 D.0.492.若 -=,则a的值是( )A. B.- C. D.-3.有下列说法: 其中正确的说法的个数是( ) (1) 无理数就是开方开不尽的数. (2) 无理数就是无限不循环小数.(3) 无理数包括正无理数,零,负无理数.(4) 无理数都可以用数轴上的点来表示.A.1 B.2 C.3 D.44.若=25,=3,则a+b=( )A.-8 B.8 C.2 D. 8或2答案:1.C 2.B 3.B 4.D二填空题5在其中_是整数,_是无理数,_是有理数.6.的相反数是_,绝对值是_.7.在数轴上表示的点离原点的距离是_.8.若E有意义,则_.9.若,则_.10.若一个数的立方根就是它本身,则这个数是_.三.解答题.11.计算. (1) (2) (精确到0.01) (3) (4)(保留三个有效数字)12.求下列各式中的X. (1) X2=17 (2) 13. 写出所有符合下列条件的数 (1) 大于小于的所有整数; (2) 绝对值小于的所有整数.立方根(1)教学目标:1、了解立方根的概念,初步学会用根号表示一个数的立方根.2、了解开立方与立方互为逆运算,会用立方运算求某些数的立方根.3、让学生体会一个数的立方根的惟一性.4、分清一个数的立方根与平方根的区别。教学重点:立方根的概念和求法。教学难点:立方根与平方根的区别。教学过程一、情境导入:问题:要制作一种容积为27 m3的正方体形状的包装箱,这种包装箱的边长应该是多少?设这种包装箱的边长为x m,则=27这就是求一个数,使它的立方等于27. 因为=27, 所以x=3. 即这种包装箱的边长应为3 m二、新课:1、归纳 :如果一个数的立方等于,这个数叫做的立方根(也叫做三次方根),即如果,那么叫做的立方根2、探究: 根据立方根的意义填空,看看正数、0、负数的立方根各有什么特点? 因为,所以8的立方根是( 2 ) 因为,所以0.125的立方根是( )因为,所以8的立方根是( 0 )因为,所以8的立方根是( )因为,所以8的立方根是( )一个正数有一个正的立方根0有一个立方根,是它本身一个负数有一个负的立方根任何数都有唯一的立方根 【总结归纳】 一个数的立方根,记作,读作:“三次根号”,其中叫被开方数,3叫根指数,不能省略,若省略表示平方。例如:表示27的立方根,;表示的立方根,.3、探究: 因为所以 = 因为,所以 = 利用开立方和立方互为逆运算关系,求一个数的立方根,就可以利用这种互逆关系,检验其正确性,求负数的立方根,可以先求出这个负数的绝对值的立方根,再取其相反数,即。4、 例 求下列各式的值:(1); (2); (3) (4); (5); (6)三、练习:课本P79练习1、2、3四、小结:1.立方根和开立方的定义2.正数、0、负数的立方根的特征3.立方根与平方根的异同五、作业: P80习题13.2第1、3、5、6题立方根(2)教学目标:1、使学生进一步理解立方根的概念,并能熟练地进行求一个数的立方根的运算.2、能用有理数估计一个无理数的大致范围,使学生形成估算的意识,培养学生的估算能力。教学重点:用有理数估计一个无理的大致范围。教学难点:用有理数估计一个无理的大致范围。教学过程一、复习引入:1、求下列各式的值 ;二、新课:1、问题:有多大呢?因为,所以因为,所以因为,所以如此循环下去,可以得到更精确的的近似值,它是一个无限不循环小数,=一3684 031 49事实上,很多有理数的立方根都是无限不循环小数我们用有理数近似地表示它们2、利用计算器来求一个数的立方根:操作 用计算器求数的立方根的步骤及方法:用计算器求立方根和求平方根的步骤相同,只是根指数不同。步骤:输入 被开方数 = 根据显示写出立方根.例:求5的立方根(保留三个有效数字) 被开方数 = 1.709975947所以 三、练习1、课本P79的练习2.2、利用计算器计算,并将计算结果填在表中,你发现了什么吗?你能说说其中的道理吗?3、用计算器计算(结果个有效数字)。并利用你发现的规律说出,的近似值。四、小结:1、立方根的概念和性质。2、用计算器来求一个数的立方根。五、作业:P80习题13.2第4、8题立方根(练习课)教学目的:通过练习,使学生进一步理解立方根的概念,并能熟练、灵活地进行求一个数的立方根的运算。教学重点:能熟练、灵活地进行求一个数的立方根的运算。教学难点:能熟练、灵活地进行求一个数的立方根的运算。教具准备:小黑板教学过程一、填空题:1、a 的立方根是 ,-a 的立方根是 ;若x3=a , 则x= = ;= ;-= ;= 2、每一个数a 都只有 个立方根;即正数只有 个立方根;负数只有 个立方根;零只有 个立方根,就是 本身。3、2的立方等于 ,8的立方根是 ;(-3)3= ,-27的立方根是 .。 4、0.064的立方根是 ; 的立方根是-4; 的立方根是。5、计算:= ;= ; = ;= = ;-= ;-= ;= = ;= ;-= ;= 二、判断下列说法是否正确:1、5是125的立方根 。 ( )2、4是64的立方根 。 ( )3、-2.5是-15.625的立方根。 ( )4、(-4)3 的立方根是-4。 ( ) 答案:1、 2、 3、 4、 三、解答题1.求下列各数的立方根:(1) 27; (2)38; (3)1; (4) 0.2.求下列各式的值:(1) (2);(3) ;(4) ;3、计算:(1) (2)13.3实数(1)教学目标:(1)了解无理数和实数的概念和实数的分类,知道实数和数轴上的点一一对应关系 .(2)让学生感知无理数的存在,经历数系从有理数扩展到实数的过程 .通过无理数的引入,培养从特殊到一般、具体到抽象的逻辑思维能力 .(3)渗透数形结合及分类的思想,体验数系的扩展源于实际,又服务于实际的辩证关系 .教学重点:理解无理数、实数的意义和实数的分类 .教学难点:正确理解无理数的意义 .(一)导入新课在小学时候,我们认识了一个非常特殊的数:圆周率,它约等于3.14,你还能说出它后面的数字吗?比一比,看谁记住最多 .目前值已准确到上千亿位,是一个怎样的数呢?是有理数吗? 整数 如:-3,0 ,5有理数 分数 如:,肯定不是整数,那么它一个分数吗?请同学们将下列的小数形式:5= ,= ,= ,= .引导发现:任何有理数写成小数的形式,一定是有限小数或者无限小数,因此可以说不是有理数,它是一个无限不循环小数,我们知道,很多数的平方根和立方根都是无限不循环小数,如,我们把无限不循环小数又叫无理数 .我们把有理数和无理数统称为实数,这就是今天我们将要学习的内容实数 .(二)新知探究 探究1:数的扩张与分类 像有理数一样,无理数也有正负之分 .例如,是正无理数,是负无理数 .由于非0有理数和无理数都有正负之分,所以实数也可以这样分类: 探究2 实数与数轴的对应关系(1)我们在学习有理数时,认识了数轴,什么叫数轴?(2)我们知道,每个有理数都可以用数轴上的点来表示,反过来,数轴上的有的点都表示有理数吗?无理数是否也可以用数轴上的点来表示呢?(3)如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O,点O的坐标是多少?(4)在前面的学习中,我们还知道边长为1的正方形的对角线长为,在数轴上表示的点(画图) .事实上,数轴上数,不仅表示有理数的点,还有表示无理数的点,当从有理数扩充到实数以后,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数 .(三)范例讲解例1 下列说法正确吗?请说明理由 .(1)314是无理数; (2)无限小数都是无理数;(3)无理数都是无限小数; (4)带根号的数都是无理数;例2把下列各数分别填入相应的集合里: ,0.1010010001,0.5,实数集 ,无理数集 ,有理数集 ,分数集 ,负无理数集 .(四)知能训练1、请将数轴上的各点与下列实数对应起来:,-1.5, ,32、如图,在数轴上点A和点B之间表示整数的点有 个,分别是 .(五)总结反思1、无理数、实数的意义及实数的分类. 2、实数与数轴的对应关系 .
展开阅读全文