2020高考数学大一轮复习 第二章 函数概念与基本初等函数 9 第9讲 函数模型及其应用练习 理(含解析)

上传人:Sc****h 文档编号:116800876 上传时间:2022-07-06 格式:DOC 页数:8 大小:2.54MB
返回 下载 相关 举报
2020高考数学大一轮复习 第二章 函数概念与基本初等函数 9 第9讲 函数模型及其应用练习 理(含解析)_第1页
第1页 / 共8页
2020高考数学大一轮复习 第二章 函数概念与基本初等函数 9 第9讲 函数模型及其应用练习 理(含解析)_第2页
第2页 / 共8页
2020高考数学大一轮复习 第二章 函数概念与基本初等函数 9 第9讲 函数模型及其应用练习 理(含解析)_第3页
第3页 / 共8页
点击查看更多>>
资源描述
第9讲 函数模型及其应用 基础题组练1在某种新型材料的研制中,实验人员获得了下列一组实验数据,现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是()x1.992345.156.126y1.5174.041 87.51218.01A.y2x2 By(x21)Cylog2xDylogx解析:选B.由题中表可知函数在(0,)上是增函数,且y的变化随x的增大而增大得越来越快,分析选项可知B符合,故选B.2某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对于进价),则该家具的进价是()A118元B105元C106元D108元解析:选D.设进价为a元,由题意知132(110%)a10%a,解得a108.故选D.3小明在如图1所示的跑道上匀速跑步,他从点A出发,沿箭头方向经过点B跑到点C,共用时30 s,他的教练选择了一个固定的位置观察小明跑步的过程,设小明跑步的时间为t(s),他与教练间的距离为y(m),表示y与t的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的()A点MB点NC点PD点Q解析:选D.A.假设这个位置在点M,则从A至B这段时间,y不随时间的变化改变,与函数图象不符,故本选项错误;B.假设这个位置在点N,则从A至C这段时间,A点与C点对应y的大小应该相同,与函数图象不符,故本选项错误;C.假设这个位置在点P,则由函数图象可得,从A到C的过程中,会有一个时刻,教练到小明的距离等于经过30 s时教练到小明的距离,而点P不符合这个条件,故本选项错误;D.经判断点Q符合函数图象,故本选项正确,故选D.4一种放射性元素的质量按每年10%衰减,这种放射性元素的半衰期(剩余质量为最初质量的一半所需的时间叫作半衰期)是(精确到0.1,已知lg 20.301 0,lg 30.477 1)()A5.2B6.6C7.1D8.3解析:选B.设这种放射性元素的半衰期是x年,则(110%)x,化简得0.9x,即xlog0.96.6(年)故选B. 5(2019高考全国卷)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是(0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105 cm,头顶至脖子下端的长度为26 cm,则其身高可能是()A165 cm B175 cmC185 cm D190 cm解析:选B.26260.618(26260.618)0.618178(cm),故其身高可能是175 cm,故选B.6根据统计,一名工人组装第x件某产品所用的时间(单位:分钟)为f(x)(A,c为常数)已知工人组装第4件产品用时30分钟,组装第A件产品用时15分钟,那么c和A的值分别是()A75,25B75,16C60,25D60,16解析:选D.由函数解析式可以看出,组装第A件产品所需时间为15,故组装第4件产品所需时间为30,解得c60,将c60代入15,得A16.7拟定甲、乙两地通话m分钟的电话费(单位:元)由f(m)1.06(0.5m1)给出,其中m0,m是不超过m的最大整数(如33,3.73,3.13),则甲、乙两地通话6.5分钟的电话费为_元解析:因为m6.5,所以m6,则f(m)1.06(0.561)4.24.答案:4.248某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况加油时间加油量(升)加油时的累计里程(千米)2016年5月1日1235 0002016年5月15日4835 600注:“累计里程”指汽车从出厂开始累计行驶的路程在这段时间内,该车每100千米平均耗油量为_升解析:因为每次都把油箱加满,第二次加了48升油,说明这段时间总耗油量为48升,而行驶的路程为35 60035 000600(千米),故每100千米平均耗油量为4868(升)答案:89(2019河北唐山模拟)某人计划购买一辆A型轿车,售价为14.4万元,购买后轿车每年的保险费、汽油费、年检费、停车费等约需2.4万元,同时汽车年折旧率约为10%(即这辆车每年减少它的价值的10%),试问,大约使用_年后,用在该车上的费用(含折旧费)达到14.4万元解析:设使用x年后花费在该车上的费用达到14.4万元,依题意可得,14.4(10.9x)2.4x14.4,化简得x60.9x0.令f(x)x60.9x,易得f(x)为单调递增函数,又f(3)1.3740,f(4)0.063 40,所以函数f(x)在(3,4)上有一个零点故大约使用4年后,用在该车上的费用达到14.4万元答案:410如图,已知边长为8米的正方形钢板有一个角被锈蚀,其中AE4米,CD6米为了合理利用这块钢板,在五边形ABCDE内截取一个矩形BNPM,使点P在边DE上(1)设MPx米,PNy米,将y表示成x的函数,并求该函数的解析式及定义域;(2)求矩形BNPM面积的最大值解:(1)如图,作PQAF于Q,所以PQ8y,EQx4,在EDF中,所以,所以yx10,定义域为x|4x8(2)设矩形BNPM的面积为S,则S(x)xyx(x10)250,所以S(x)是关于x的二次函数,且其图象开口向下,对称轴为直线x10,所以当x4,8时,S(x)单调递增,所以当x8时,矩形BNPM的面积取得最大值,最大值为48平方米11“活水围网”养鱼技术具有养殖密度高、经济效益好的特点研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v(单位:千克/年)是养殖密度x(单位:尾/立方米)的函数当x不超过4尾/立方米时,v的值为2千克/年;当4x20时,v是x的一次函数,当x达到20尾/立方米时,因缺氧等原因,v的值为0千克/年(1)当0x20时,求函数v关于x的函数解析式(2)当养殖密度x为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值解析:(1)由题意得当0x4时,v2;当4x20时,设vaxb,显然vaxb在(4,20内是减函数,由已知得解得所以vx,故函数v(2)设年生长量为f(x)千克/立方米,依题意并由(1)可得f(x)当0x4时,f(x)为增函数,故f(x)maxf(4)428;当4x20时,f(x)x2x(x220x)(x10)2,f(x)maxf(10)12.5.所以当080时,y5,不满足条件;故该函数模型不符合公司要求(b)对于函数模型()ylog2x2,它在10,100上是增函数,满足条件,x100时,ymaxlog210022log255,即f(x)5恒成立满足条件,设h(x)log2x2x,则h(x),又x10,100,所以,所以h(x)0,所以h(x)在10,100上是递减的,因此h(x)h(10)log21040,即f(x)恒成立,满足条件,故该函数模型符合公司要求综上所述,函数模型()ylog2x2符合公司要求- 8 -
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 幼儿教育


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!