整式加减5 (2)

上传人:gmk****56 文档编号:113704162 上传时间:2022-06-26 格式:PPT 页数:10 大小:215.50KB
返回 下载 相关 举报
整式加减5 (2)_第1页
第1页 / 共10页
整式加减5 (2)_第2页
第2页 / 共10页
整式加减5 (2)_第3页
第3页 / 共10页
点击查看更多>>
资源描述
3.4整式的加减第五课时第五课时 整式的加减整式的加减讲解点讲解点1 1:整式加减的意义:整式加减的意义精讲:精讲: 就是求几个整式的就是求几个整式的和或者差和或者差的的代数运算代数运算。要注意。要注意的是整式的加减包括单项式的加减、多项式的加的是整式的加减包括单项式的加减、多项式的加减、单项式与多项式之间的加减。减、单项式与多项式之间的加减。 典例典例 1.1.求单项式求单项式2x2x2 2y y3 3、-4x-4x2 2y y3 3与与-3x-3x2 2y y3 3的和。的和。解:解:2x2x2 2y y3 3+(-4x+(-4x2 2y y3 3)+(-3x)+(-3x2 2y y3 3) ) = 2x = 2x2 2y y3 3+(-4x+(-4x2 2y y3 3)+(-3x)+(-3x2 2y y3 3) ) =(-3x =(-3x2 2-2x-2x2 2)+(x+6x+6x)+(-3-4)+(x+6x+6x)+(-3-4) =-5x =-5x2 2+13x-7+13x-7练习:计算练习:计算(8xy-3y(8xy-3y2 2)-5xy-2(3xy-2x)-5xy-2(3xy-2x2 2) )。评析:直接从评析:直接从“和和”的意义出发,列出算式,注意后两项要的意义出发,列出算式,注意后两项要带上括号。因为单项式包括它前面的符号,然后再按去括号带上括号。因为单项式包括它前面的符号,然后再按去括号法则去括号后合并同类项就是结果。法则去括号后合并同类项就是结果。2.2.某中学合唱团出场时第一排站了某中学合唱团出场时第一排站了n n名同学,从第二名同学,从第二排起每一排都前面一排多排起每一排都前面一排多1 1人,一共站了四排,则该人,一共站了四排,则该合唱团一共有多少名同学参加?合唱团一共有多少名同学参加? 评析:注意归纳概括出后面的人数的表达式(即代数式)评析:注意归纳概括出后面的人数的表达式(即代数式)解:由已知得,从第二排起,到第四排,人数分别为:解:由已知得,从第二排起,到第四排,人数分别为:n+1,n+2,n+3n+1,n+2,n+3所以所以 该合唱团总共有:该合唱团总共有:n+(n+1)+(n+2)+(n+3)n+(n+1)+(n+2)+(n+3) =(4n+6)( =(4n+6)(人人) )答:该合唱团一共有答:该合唱团一共有(4n+6)(4n+6)名同学参加。名同学参加。练习:三角形的周长为练习:三角形的周长为4848,第一条边长为,第一条边长为(3a+2b)(3a+2b),第,第二条边的二条边的2 2倍比第一条边长倍比第一条边长(a-2b+2)(a-2b+2),求第三条边的长,求第三条边的长讲解点讲解点2 2:整式加减的一般步骤:整式加减的一般步骤 精讲:精讲:去括号去括号和和合并同类项合并同类项是整式加减的基础是整式加减的基础 一般步骤是:一般步骤是:(1 1)如果有括号,那么先去括号;)如果有括号,那么先去括号;(2 2)观察有无同类项;)观察有无同类项;(3 3)利用加法的交换律和结合律,分组同)利用加法的交换律和结合律,分组同类项。类项。(4 4)合并同类项。)合并同类项。简单地讲,就是:简单地讲,就是:去括号、合并同类项。去括号、合并同类项。因此只要掌握了合并同类项的方法,就能因此只要掌握了合并同类项的方法,就能正确进行整式的加减。正确进行整式的加减。 注意:整式加减注意:整式加减运算的结果运算的结果仍然是仍然是整式整式 典例典例 为资助贫困山区儿童入学,我校甲、乙、为资助贫困山区儿童入学,我校甲、乙、丙三位同学决定把平时节省下来的零花钱捐给希望丙三位同学决定把平时节省下来的零花钱捐给希望工程,已知甲同学捐资工程,已知甲同学捐资x x元,乙同学捐资比甲同学捐元,乙同学捐资比甲同学捐资的资的3 3倍少倍少8 8元,丙同学捐资数是甲和乙同学捐资数元,丙同学捐资数是甲和乙同学捐资数的总和的的总和的3/43/4,求甲、乙、丙三位同学的捐资总数。,求甲、乙、丙三位同学的捐资总数。评析:这是一个利用整式加减计算的应用问题,首先要根据评析:这是一个利用整式加减计算的应用问题,首先要根据题意列出各量的代数式,然后求和进行加减运算。题意列出各量的代数式,然后求和进行加减运算。解:根据题意,知解:根据题意,知甲同学捐资甲同学捐资x x元,乙同学捐资元,乙同学捐资(3x-8)(3x-8)元元那么,丙同学捐资那么,丙同学捐资3/4x+(3x-8)3/4x+(3x-8)元元则甲、乙、丙的捐资总数为:则甲、乙、丙的捐资总数为:x+(3x-8)+3/4x+(3x-8)x+(3x-8)+3/4x+(3x-8)=x+3x-8+3/4(4x-8)=x+3x-8+3x-6=7x-14=x+3x-8+3/4(4x-8)=x+3x-8+3x-6=7x-14答:甲、乙、丙的捐资总数为答:甲、乙、丙的捐资总数为(7x-14)(7x-14)元。元。 典例典例 代数式代数式(x(x2 2+ax-2y+7)-(bx+ax-2y+7)-(bx2 2-2x+9y-1)-2x+9y-1)的值与的值与字母字母x x的取值无关,求的取值无关,求a a、b b的值。的值。解:解:(x(x2 2+ax-2y+7)-(bx+ax-2y+7)-(bx2 2-2x+9y-1)-2x+9y-1)= =x x2 2+ax-2y+7-bx+ax-2y+7-bx2 2+2x-9y+1+2x-9y+1= =(1-b)(1-b)x x2 2+(a+2)x-11y+8+(a+2)x-11y+8代数式代数式(x(x2 2+ax-2y+7)-(bx+ax-2y+7)-(bx2 2-2x+9y-1)-2x+9y-1)的值与字母的值与字母x x的取的取值无关,值无关,1-b=01-b=0,a+2=0a+2=0,解得,解得a=-2 a=-2 ,b=1b=1。答:答:a=-2 a=-2 ,b=1b=1。评析:这是一个利用整式加减解答的综合问题,先通评析:这是一个利用整式加减解答的综合问题,先通过去括号,合并同类项将所给的代数式化简,然后根过去括号,合并同类项将所给的代数式化简,然后根据题意列出方程,从而求出据题意列出方程,从而求出a a、b b的值。的值。思考:若代数式思考:若代数式(2x(2x2 2+ax-5y+b)-(2bx+ax-5y+b)-(2bx2 2-3x+5y-1)-3x+5y-1)的值与的值与字母字母x x的取值无关,求代数式的取值无关,求代数式3(a3(a2 2-ab-b-ab-b2 2)-(4a)-(4a2 2+ab+b+ab+b2 2) )的值。的值。 典例典例 计算计算3x3x2 2-2x+1-(3+x+3x-2x+1-(3+x+3x2 2) )评析:去括号时,括号前是评析:去括号时,括号前是“-”-”号的,去括号后,号的,去括号后,里面各项的符号里面各项的符号都都要改变。要改变。错解:原式错解:原式=3x=3x2 2-2x+1-3+x+3x-2x+1-3+x+3x2 2 =3x =3x2 2+3x+3x2 2-2x+x+1-3=-2x+x+1-3=6x6x2 2-x-2-x-2正解:原式正解:原式=3x=3x2 2-2x+1-3-x-3x-2x+1-3-x-3x2 2 =3x=3x2 2-3x-3x2 2-2x-x+1-3=-2x-x+1-3=-3x-2-3x-2思考:计算思考:计算(3a(3a2 2+2a+1)-(2a+2a+1)-(2a2 2+3a-5)+3a-5)的结果是(的结果是( )A.aA.a2 2-5a+6 B.a-5a+6 B.a2 2-5a-4 C.a-5a-4 C.a2 2-a-4 D.a-a-4 D.a2 2-a-6-a-6 典例典例 在多项式在多项式a ax x5 5+bx+bx3 3+cx-5+cx-5中,当中,当x=-3x=-3时,它的值时,它的值为为7 7;当;当x=3x=3时,它的值是多少?时,它的值是多少?解一:解一:巧添括号巧添括号当当x=-3x=-3时,原式时,原式=a(-3)=a(-3)5 5+b(-3)+b(-3)3 3+c(-3)-5=-3+c(-3)-5=-35 5a-3a-33 3b-3c-5=7b-3c-5=7 -3-35 5a-3a-33 3b-3c=12b-3c=12当当x=3x=3时,原式时,原式=3=35 5a+3a+33 3b+3c-5=-(-3b+3c-5=-(-35 5a-3a-33 3b-3c)-5=-12-5=b-3c)-5=-12-5=-17-17 解二:解二:巧用相反数巧用相反数当当x=-3x=-3时,原式时,原式=a(-3)=a(-3)5 5+b(-3)+b(-3)3 3+c(-3)-5=-3+c(-3)-5=-35 5a-3a-33 3b-3c-5=7b-3c-5=7,3 35 5a-3a-33 3b-3c=12b-3c=12,(3(35 5a+3a+33 3b+3c)+(-3b+3c)+(-35 5a-3a-33 3b-3c)=0b-3c)=0(3(35 5a+3a+33 3b+3c)b+3c)与与(-3(-35 5a-3a-33 3b-3c)b-3c)互为相反数。互为相反数。3 35 5a+3a+33 3b+3c=-12b+3c=-12,当,当x=3x=3时,原式时,原式=3=35 5a+3a+33 3b+3c-5=-12-5=b+3c-5=-12-5=-17-17 典例典例 在多项式在多项式a ax x5 5+bx+bx3 3+cx-5+cx-5中,当中,当x=-3x=-3时,它的值时,它的值为为7 7;当;当x=3x=3时,它的值是多少?时,它的值是多少?解三:解三:巧用方程巧用方程当当x=-3x=-3时,原式时,原式=-3=-35 5a-3a-33 3b-3c-5=7b-3c-5=7当当x=3x=3时,时, 原式原式=3=35 5a+3a+33 3b+3c-5 b+3c-5 设设3 35 5a+3a+33 3b+3c-5=m b+3c-5=m ;+ + 得:得:-10=7+m-10=7+m,得,得m=-17m=-17即当即当x=3x=3时,原式时,原式= =-17-17 解四:解四:巧用特殊值巧用特殊值当当x=-3x=-3时,原式时,原式=-3=-35 5a-3a-33 3b-3c-5=7b-3c-5=7,由于,由于a a、b b、c c的值不确定,的值不确定,因此可用取特殊值法来解,考虑到因此可用取特殊值法来解,考虑到a a、b b的系数较大,不妨取的系数较大,不妨取a=b=0a=b=0,则,则c=-4c=-4。 当当x=3x=3时,原式时,原式=3=35 5a+3a+33 3b+3c-5=0+0+3b+3c-5=0+0+3(-4)-5=(-4)-5=-17-17 评析:在上述四种解法的解题过程中,始终没有求出评析:在上述四种解法的解题过程中,始终没有求出3 35 5和和3 33 3的的值,这是因为值,这是因为3 35 5和和3 33 3是非必须要求的成分,这样做可以省时省是非必须要求的成分,这样做可以省时省力,提高解题效率。力,提高解题效率。小结小结1 1、整式加减的意义、整式加减的意义2 2、整式加减的一般步骤、整式加减的一般步骤作业作业
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 小学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!